Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Theor Appl Genet ; 136(9): 200, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37639002

RESUMEN

KEY MESSAGE: The leaf rust resistance gene Lr19, which is present on the long arm of chromosome 7E1 in Thinopyrum ponticum, was mapped within a 0.3-cM genetic interval, and translocation lines were developed to break its linkage with yellow pigmentation The leaf rust resistance locus Lr19, which was transferred to wheat (Triticum aestivum) from its relative Thinopyrum ponticum in 1966, still confers broad resistance to most known races of the leaf rust pathogen Puccinia triticina (Pt) worldwide. However, this gene has not previously been fine-mapped, and its tight linkage with a gene causing yellow pigmentation has limited its application in bread wheat breeding. In this study, we genetically mapped Lr19 using a bi-parental population from a cross of two wheat-Th. ponticum substitution lines, the Lr19-carrying line 7E1(7D) and the leaf rust-susceptible line 7E2(7D). Genetic analysis of the F2 population and the F2:3 families showed that Lr19 was a single dominant gene. Genetic markers allowed the gene to be mapped within a 0.3-cM interval on the long arm of Th. ponticum chromosome 7E1, flanked by markers XsdauK3734 and XsdauK2839. To reduce the size of the Th. ponticum chromosome segment carrying Lr19, the Chinese Spring Ph1b mutant was employed to promote recombination between the homoeologous chromosomes of the wheat chromosome 7D and the Th. ponticum chromosome 7E1. Two translocation lines with short Th. ponticum chromosome fragments carrying Lr19 were identified using the genetic markers closely linked to Lr19. Both translocation lines were resistant to 16 Pt races collected throughout China. Importantly, the linkage between Lr19 and yellow pigment content was broken in one of the lines. Thus, the Lr19 linked markers and translocation lines developed in this study are valuable resources in marker-assisted selection as part of common wheat breeding programs.


Asunto(s)
Fitomejoramiento , Triticum , Humanos , Marcadores Genéticos , Triticum/genética , Mapeo Cromosómico , Translocación Genética
2.
Proc Natl Acad Sci U S A ; 117(11): 5955-5963, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32123089

RESUMEN

In plants, the mechanism for ecological sympatric speciation (SS) is little known. Here, after ruling out the possibility of secondary contact, we show that wild emmer wheat, at the microclimatically divergent microsite of "Evolution Canyon" (EC), Mt. Carmel, Israel, underwent triple SS. Initially, it split following a bottleneck of an ancestral population, and further diversified to three isolated populations driven by disruptive ecological selection. Remarkably, two postzygotically isolated populations (SFS1 and SFS2) sympatrically branched within an area less than 30 m at the tropical hot and dry savannoid south-facing slope (SFS). A series of homozygous chromosomal rearrangements in the SFS1 population caused hybrid sterility with the SFS2 population. We demonstrate that these two populations developed divergent adaptive mechanisms against severe abiotic stresses on the tropical SFS. The SFS2 population evolved very early flowering, while the SFS1 population alternatively evolved a direct tolerance to irradiance by improved ROS scavenging activity that potentially accounts for its evolutionary fate with unstable chromosome status. Moreover, a third prezygotically isolated sympatric population adapted on the abutting temperate, humid, cool, and forested north-facing slope (NFS), separated by 250 m from the SFS wild emmer wheat populations. The NFS population evolved multiple resistant loci to fungal diseases, including powdery mildew and stripe rust. Our study illustrates how plants sympatrically adapt and speciate under disruptive ecological selection of abiotic and biotic stresses.


Asunto(s)
Resistencia a la Enfermedad/genética , Simpatría/genética , Triticum/genética , Ascomicetos , Basidiomycota , Cromosomas de las Plantas , Flujo Génico , Genes de Plantas/genética , Homocigoto , Israel , Cariotipificación , Enfermedades de las Plantas/microbiología , Estrés Fisiológico
3.
BMC Genomics ; 22(1): 864, 2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34852761

RESUMEN

BACKGROUND: Prolamins, unique to Gramineae (grasses), play a key role in the human diet. Thinopyrum elongatum (syn. Agropyron elongatum or Lophopyrum elongatum), a grass of the Triticeae family with a diploid E genome (2n = 2x = 14), is genetically well-characterized, but little is known about its prolamin genes and the relationships with homologous loci in the Triticeae species. RESULTS: In this study, a total of 19 α-gliadin, 9 γ-gliadin, 19 ω-gliadin, 2 high-molecular-weight glutenin subunit (HMW-GS), and 5 low-molecular-weight glutenin subunit (LMW-GS) genes were identified in the Th. elongatum genome. Micro-synteny and phylogenetic analysis revealed dynamic changes of prolamin gene regions and genetic affinities among Th. elongatum, Triticum aestivum, T. urartu and Aegilops tauschii. The Th. elongatum genome, like the B subgenome of T. aestivum, only contained celiac disease epitope DQ8-glia-α1/DQ8.5-glia-α1, which provided a theoretical basis for the low gluten toxicity wheat breeding. The transcriptome data of Th. elongatum exhibited differential expression in quantity and pattern in the same subfamily or different subfamilies. Dough rheological properties of T. aestivum-Th. elongatum disomic substitution (DS) line 1E(1D) showed higher peak height values than that of their parents, and DS6E(6D) exhibited fewer α-gliadins, which indicates the potential usage for wheat quality breeding. CONCLUSIONS: Overall, this study provided a comprehensive overview of the prolamin gene family in Th. elongatum, and suggested a promising use of this species in the generation of improved wheat breeds intended for the human diet.


Asunto(s)
Fitomejoramiento , Poaceae , Prolaminas , Filogenia , Poaceae/genética , Prolaminas/genética , Triticum/genética
4.
Theor Appl Genet ; 133(3): 917-933, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31897512

RESUMEN

KEY MESSAGE: Eight environmentally stable QTL for grain yield-related traits were detected by four RIL populations, and two of them were validated by a natural wheat population containing 580 diverse varieties or lines. Yield and yield-related traits are important factors in wheat breeding. In this study, four RIL populations derived from the cross of one common parent Yanzhan 1 (a Chinese domesticated cultivar) and four donor parents including Hussar (a British domesticated cultivar) and three semi-wild wheat varieties in China were phenotyped for 11 yield-related traits in eight environments. An integrated genetic map containing 2009 single-nucleotide polymorphism (SNP) markers generated from a 90 K SNP array was constructed to conduct quantitative trait loci (QTL) analysis. A total of 161 QTL were identified, including ten QTL for grain yield per plant (GYP) and yield components, 49 QTL for spike-related traits, 43 QTL for flag leaf-related traits, 22 QTL for plant height (PH), and 37 QTL for heading date and flowering date. Eight environmentally stable QTL were validated in individual RIL population where the target QTL was notably detected, and six of them had a significant effect on GYP. Furthermore, Two QTL, QSPS-2A.4 and QSL-4A.1, were also validated in a natural wheat population containing 580 diverse varieties or lines, which provided valuable resources for further fine mapping and genetic improvement in yield in wheat.


Asunto(s)
Grano Comestible/genética , Sitios de Carácter Cuantitativo , Triticum/genética , Alelos , China , Mapeo Cromosómico , Cromosomas de las Plantas , Grano Comestible/crecimiento & desarrollo , Flores/genética , Flores/crecimiento & desarrollo , Flores/fisiología , Ligamiento Genético , Genoma de Planta , Genotipo , Fenotipo , Fitomejoramiento , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Polimorfismo de Nucleótido Simple , Triticum/crecimiento & desarrollo
5.
Front Plant Sci ; 13: 837410, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35498638

RESUMEN

Even frequently used in wheat breeding, we still have an insufficient understanding of the biology of the products via distant hybridization. In this study, a transcriptomic analysis was performed for six Triticum aestivum-Thinopyrum elongatum substitution lines in comparison with the host plants. All the six disomic substitution lines showed much stronger "transcriptomic-shock" occurred on alien genomes with 57.43-69.22% genes changed expression level but less on the recipient genome (2.19-8.97%). Genome-wide suppression of alien genes along chromosomes was observed with a high proportion of downregulated genes (39.69-48.21%). Oppositely, the wheat recipient showed genome-wide compensation with more upregulated genes, occurring on all chromosomes but not limited to the homeologous groups. Moreover, strong co-upregulation of the orthologs between wheat and Thinopyrum sub-genomes was enriched in photosynthesis with predicted chloroplastic localization, which indicates that the compensation happened not only on wheat host genomes but also on alien genomes.

6.
Front Plant Sci ; 13: 926621, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35845685

RESUMEN

Fusarium head blight, mainly incited by Fusarium graminearum, is a devastating wheat disease worldwide. Diverse Fusarium head blight (FHB) resistant sources have been reported, but the resistance mechanisms of these sources remain to be investigated. FHB-resistant wheat germplasm often shows black necrotic lesions (BNLs) around the infection sites. To determine the relationship between BNL and FHB resistance, leaf tissue of a resistant wheat cultivar Sumai 3 was inoculated with four different F. graminearum isolates. Integrated metabolomic and transcriptomic analyses of the inoculated samples suggested that the phytohormone signaling, phenolamine, and flavonoid metabolic pathways played important roles in BNL formation that restricted F. graminearum extension. Exogenous application of flavonoid metabolites on wheat detached leaves revealed the possible contribution of flavonoids to BNL formation. Exogenous treatment of either salicylic acid (SA) or methyl jasmonate (MeJA) on wheat spikes significantly reduced the FHB severity. However, exogenous MeJA treatment prevented the BNL formation on the detached leaves of FHB-resistant wheat Sumai 3. SA signaling pathway influenced reactive oxygen species (ROS) burst to enhance BNL formation to reduce FHB severity. Three key genes in SA biosynthesis and signal transduction pathway, TaICS1, TaNPR1, and TaNPR3, positively regulated FHB resistance in wheat. A complex temporal interaction that contributed to wheat FHB resistance was detected between the SA and JA signaling pathways. Knowledge of BNLs extends our understanding of the molecular mechanisms of FHB resistance in wheat and will benefit the genetic improvement of wheat FHB resistance.

7.
Int J Genomics ; 2021: 6289174, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33681347

RESUMEN

Glutathione S-transferases (GSTs) are ancient proteins encoded by a large gene family in plants, which play multiple roles in plant growth and development. However, there has been little study on the GST genes of common wheat (Triticum aestivum) and its relatives (Triticum durum, Triticum urartu, and Aegilops tauschii), which are four important species of Triticeae. Here, a genome-wide comprehensive analysis of this gene family was performed on the genomes of common wheat and its relatives. A total of 346 GST genes in T. aestivum, 226 in T. durum, 104 in T. urartu, and 105 in Ae. tauschii were identified, and all members were divided into ten classes. Transcriptome analysis was used to identify GST genes that respond to salt stress in common wheat, which revealed that the reaction of GST genes is not sensitive to low and moderate salt concentrations but is sensitive to severe concentrations of the stressor, and the GST genes related to salt stress mainly come from the Tau and Phi classes. Six GST genes which respond to different salt concentrations were selected and validated by a qRT-PCR assay. These findings will not only provide helpful information about the function of GST genes in Triticeae species but also offer insights for the future application of salt stress resistance breeding in common wheat.

8.
Science ; 368(6493)2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32273397

RESUMEN

Fusarium head blight (FHB), a fungal disease caused by Fusarium species that produce food toxins, currently devastates wheat production worldwide, yet few resistance resources have been discovered in wheat germplasm. Here, we cloned the FHB resistance gene Fhb7 by assembling the genome of Thinopyrum elongatum, a species used in wheat distant hybridization breeding. Fhb7 encodes a glutathione S-transferase (GST) and confers broad resistance to Fusarium species by detoxifying trichothecenes through de-epoxidation. Fhb7 GST homologs are absent in plants, and our evidence supports that Th. elongatum has gained Fhb7 through horizontal gene transfer (HGT) from an endophytic Epichloë species. Fhb7 introgressions in wheat confers resistance to both FHB and crown rot in diverse wheat backgrounds without yield penalty, providing a solution for Fusarium resistance breeding.


Asunto(s)
Resistencia a la Enfermedad/genética , Epichloe/genética , Fusarium/patogenicidad , Transferencia de Gen Horizontal , Glutatión Transferasa/genética , Enfermedades de las Plantas/microbiología , Triticum/genética , Triticum/microbiología , Clonación Molecular , Fitomejoramiento , Poaceae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA