Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ann Surg Oncol ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39179863

RESUMEN

BACKGROUND: This study reported the safety and efficacy of a phase 2, open-label, single-arm, exploratory clinical trial of induction immunochemotherapy in patients with initially unresectable advanced esophageal squamous cell carcinoma (ESCC). PATIENTS AND METHODS: Patients underwent three cycles of induction therapy with tislelizumab, cisplatin, and 5-fluorouracil. The primary endpoints were the safety, major pathological response (MPR), and pathological complete response (pCR). Secondary endpoints included the R0 resection rate, disease-free survival (DFS), and overall survival (OS). Genomic data and immune microenvironment data were analyzed exploratively. RESULTS: The treatment was safe, with a grade 3 or higher adverse event rate of 14.9% (7/47). Of the total 47 patients enrolled in the study, 19 (40.4%) achieved MPR, 12 (25.5%) achieved pCR, 4 (8.5%) achieved complete clinical response (cCR) and declined surgery, and 23 (48.94%) underwent successful resection. Median follow-up was 18 months, with a median DFS of 24 months, a median OS of 36 months. A high tumor mutation burden was associated with a better prognosis for patients who underwent surgery. Patients who achieved pCR had higher levels of immune cell infiltration and a greater proportion and concentration of tertiary lymphoid structures compared with those who experienced a major pathological response. CONCLUSIONS: Tislelizumab combined with chemotherapy is effective for ESCC, yielding high cCR, pCR, surgical conversion, and R0 resection rates, and tolerable adverse events. TRIAL REGISTRATION: NCT05469061.

2.
Mol Carcinog ; 62(9): 1399-1416, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37294072

RESUMEN

Interleukin-17 (IL-17), a potent proinflammatory cytokine, can trigger the metastasis of non-small cell lung cancer (NSCLC). However, the underlying mechanism involved in IL-17-induced NSCLC cell metastasis remains unclear. In this study, we found that not only the expression of IL-17, IL-17RA, and/or general control nonrepressed protein 5 (GCN5), SRY-related HMG-BOX gene 4 (SOX4), and matrix metalloproteinase 9 (MMP9) was increased in the NSCLC tissues and in the IL-17-stimulated NSCLC cells, but also IL-17 treatment could enhance NSCLC cell migration and invasion. Further mechanism exploration revealed that IL-17-upregulated GCN5 and SOX4 could bind to the same region (-915 to -712 nt) of downstream MMP9 gene promoter driving its gene transcription. In the process, GCN5 could mediate SOX4 acetylation at lysine 118 (K118, a newly identified site) boosting MMP9 gene expression as well as cell migration and invasion. Moreover, the SOX4 acetylation or MMP9 induction and metastatic nodule number in the lung tissues of the BALB/c nude mice inoculated with the NSCLC cells stably infected by corresponding LV-shGCN5 or LV-shSOX4, LV-shMMP9 plus IL-17 incubation were markedly reduced. Overall, our findings implicate that NSCLC metastasis is closely associated with IL-17-GCN5-SOX4-MMP9 axis.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Interleucina-17/genética , Interleucina-17/metabolismo , Acetilación , Ratones Desnudos , Movimiento Celular/genética , Transcripción Genética , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Proliferación Celular/genética
3.
Gastric Cancer ; 26(2): 169-186, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36284068

RESUMEN

BACKGROUND: LIN28B plays a critical role in the Warburg effect. However, its underlying mechanism remains elusive. Recently, it has been reported that LIN28B could collaborate with IGF2BP3, which can bind to m6A-modified c-MYC transcripts. Therefore, this study investigated if LIN28B recognises methylated c-MYC mRNA to promote the Warburg effect in gastric cancer. METHODS: Effects of LIN28B on gastric cancer were confirmed in vitro and in vivo. On the basis of bioinformatics analysis, the association between LIN28B and c-MYC mRNA was shown using RNA immunoprecipitation (RIP) and luciferase reporter assays. The role of m6A was identified by RNA pull-down assays. We further performed RIP-seq to search for long non-coding RNAs (lncRNAs) participating in the LIN28B binding process. Chromatin immunoprecipitation was used to show the impact of c-MYC on transcription of LIN28B and lncRNAs. RESULTS: LIN28B was identified to stabilize c-MYC mRNA by recognizing m6A. Furthermore, the interaction between c-MYC mRNA and LIN28B is speculated to be supported by LOC101929709, which binds to both LIN28B and IGF2BP3. Functional experiments revealed that LOC101929709 promotes the proliferation, migration and glycolysis of gastric cancer. Mechanistically, LOC101929709 enriched in the cytoplasm helps LIN28B stabilize c-MYC mRNA. Moreover, c-MYC promoted the transcription of both LOC101929709 and LIN28B. Additionally, LOC101929709 also activated the PI3K/AKT pathway. CONCLUSIONS: The c-MYC/LOC101929709/LIN28B axis promotes aerobic glycolysis and tumour progression. Thus, LOC101929709 can be a novel potential target for gastric cancer treatment.


Asunto(s)
ARN Largo no Codificante , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patología , ARN Mensajero , ARN Largo no Codificante/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Proteínas de Unión al ARN/genética
4.
Genomics ; 114(4): 110402, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35714826

RESUMEN

Reprogramming of metabolism is becoming a novel hallmark of cancer. This study aims to perform bioinformatics analysis of metabolism-related genes in bladder cancer, and to construct a signature of metabolism-related genes for predicting the prognosis. A total of 373 differentially expressed metabolism-related genes were identified from TCGA database. Taking survival time and clinical information into consideration, we constructed a risk score to predict clinical prognosis. Low-risk patients had a better prognosis than high-risk patients. Multivariate analysis showed that risk score was an independent prognostic indicator in bladder cancer. ROC curve also proved that risk score had better ability to predict prognosis than other individual indicators. Nomogram also showed a clinical net benefit to evaluate the prognosis of bladder cancer patients. GSEA revealed several metabolism-related pathways that were differentially enriched in the high-risk and low-risk groups, which might help to explain the underlying mechanisms. This signature was confirmed to be an effective prognostic biomarker in bladder cancer.


Asunto(s)
Neoplasias de la Vejiga Urinaria , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Biología Computacional , Regulación Neoplásica de la Expresión Génica , Humanos , Pronóstico , Neoplasias de la Vejiga Urinaria/genética
5.
Mol Cancer ; 19(1): 6, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31924214

RESUMEN

BACKGROUND: Gastric cancer (GC) is the third leading cause of cancer-related mortality globally. Long noncoding RNAs (lncRNAs) are dysregulated in obvious malignancies including GC and exploring the regulatory mechanisms underlying their expression is an attractive research area. However, these molecular mechanisms require further clarification, especially upstream mechanisms. METHODS: LncRNA MNX1-AS1 expression in GC tissue samples was investigated via microarray analysis and further determined in a cohort of GC tissues via quantitative reverse transcription polymerase chain reaction (qRT-PCR) assays. Cell proliferation and flow cytometry assays were performed to confirm the roles of MNX1-AS1 in GC proliferation, cell cycle regulation, and apoptosis. The influence of MNX1-AS1 on GC cell migration and invasion was explored with Transwell assays. A xenograft tumour model was established to verify the effects of MNX1-AS1 on in vivo tumourigenesis. The TEAD4-involved upstream regulatory mechanism of MNX1-AS1 was explored through ChIP and luciferase reporter assays. The mechanistic model of MNX1-AS1 in regulating gene expression was further detected by subcellular fractionation, FISH, RIP, ChIP and luciferase reporter assays. RESULTS: It was found that MNX1-AS1 displayed obvious upregulation in GC tissue samples and cell lines, and ectopic expression of MNX1-AS1 predicted poor clinical outcomes for patients with GC. Overexpressed MNX1-AS1 expression promoted proliferation, migration and invasion of GC cells markedly, whereas decreased MNX1-AS1 expression elicited the opposite effects. Consistent with the in vitro results, MNX1-AS1 depletion effectively inhibited the growth of xenograft tumour in vivo. Mechanistically, TEAD4 directly bound the promoter region of MNX1-AS1 and stimulated the transcription of MNX1-AS1. Furthermore, MNX1-AS1 can sponge miR-6785-5p to upregulate the expression of BCL2 in GC cells. Meanwhile, MNX1-AS1 suppressed the transcription of BTG2 by recruiting polycomb repressive complex 2 to BTG2 promoter regions. CONCLUSIONS: Our findings demonstrate that MNX1-AS1 may be able to serve as a prognostic indicator in GC patients and that TEAD4-activatd MNX1-AS1 can promote GC progression through EZH2/BTG2 and miR-6785-5p/BCL2 axes, implicating it as a novel and potent target for the treatment of GC.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas Inmediatas-Precoces/metabolismo , Proteínas Musculares/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , ARN Largo no Codificante/genética , Neoplasias Gástricas/patología , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Movimiento Celular , Proliferación Celular , Proteínas de Unión al ADN/genética , Progresión de la Enfermedad , Femenino , Proteínas de Homeodominio/antagonistas & inhibidores , Humanos , Proteínas Inmediatas-Precoces/genética , Masculino , Ratones , Ratones Desnudos , MicroARNs/genética , Persona de Mediana Edad , Proteínas Musculares/genética , Invasividad Neoplásica , Pronóstico , Proteínas Proto-Oncogénicas c-bcl-2/genética , ARN sin Sentido/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Tasa de Supervivencia , Factores de Transcripción de Dominio TEA , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Células Tumorales Cultivadas , Proteínas Supresoras de Tumor/genética , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Mol Cancer ; 19(1): 112, 2020 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-32600329

RESUMEN

BACKGROUND: Circular RNAs (circRNAs) play important regulatory roles in the development of various cancers. However, biological functions and the underlying molecular mechanism of circRNAs in gastric cancer (GC) remain obscure. METHODS: Differentially expressed circRNAs were identified by RNA sequencing. The biological functions of circSHKBP1 in GC were investigated by a series of in vitro and in vivo experiments. The expression of circSHKBP1 was evaluated using quantitative real-time PCR and RNA in situ hybridization, and the molecular mechanism of circSHKBP1 was demonstrated by western blot, RNA pulldown, RNA immunoprecipitation, luciferase assays and rescue experiments. Lastly, mouse xenograft and bioluminescence imaging were used to exam the clinical relevance of circSHKBP1 in vivo. RESULTS: Increased expression of circSHKBP1(hsa_circ_0000936) was revealed in GC tissues and serum and was related to advanced TNM stage and poor survival. The level of exosomal circSHKBP1 significantly decreased after gastrectomy. Overexpression of circSHKBP1 promoted GC cell proliferation, migration, invasion and angiogenesis in vitro and in vivo, while suppression of circSHKBP1 plays the opposite role. Exosomes with upregulated circSHKBP1 promoted cocultured cells growth. Mechanistically, circSHKBP1 sponged miR-582-3p to increase HUR expression, enhancing VEGF mRNA stability. Moreover, circSHKBP1 directly bound to HSP90 and obstructed the interaction of STUB1 with HSP90, inhibiting the ubiquitination of HSP90, resulting in accelerated GC development in vitro and in vivo. CONCLUSION: Our findings demonstrate that exosomal circSHKBP1 regulates the miR-582-3p/HUR/VEGF pathway, suppresses HSP90 degradation, and promotes GC progression. circSHKBP1 is a promising circulating biomarker for GC diagnosis and prognosis and an exceptional candidate for further therapeutic exploration.


Asunto(s)
Proteína 1 Similar a ELAV/metabolismo , Exosomas/genética , Proteínas HSP90 de Choque Térmico/metabolismo , MicroARNs/genética , ARN Circular/genética , Neoplasias Gástricas/patología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Estudios de Casos y Controles , Proliferación Celular , Proteína 1 Similar a ELAV/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Proteínas HSP90 de Choque Térmico/genética , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Pronóstico , Proteolisis , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Tasa de Supervivencia , Células Tumorales Cultivadas , Factor A de Crecimiento Endotelial Vascular/genética , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Nucleic Acids Res ; 45(6): 3086-3101, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-27956498

RESUMEN

Recently, long non-coding RNAs (lncRNAs) have been shown to have important regulatory roles in human cancer biology. In our study, we found that lncRNA CCAT1, whose expression is significantly increased and is correlated with outcomes in Esophageal Squamous Cell Carcinoma (ESCC). Consecutive experiments confirmed that H3K27-acetylation could activate expression of colon cancer associated transcript-1 (CCAT1). Further experiments revealed that CCAT1 knockdown significantly repressed the proliferation and migration both in vitro and in vivo. RNA-seq analysis revealed that CCAT1 knockdown preferentially affected genes that are linked to cell proliferation, cell migration and cell adhesion. Mechanistic investigations found that CCAT1 could serve as a scaffold for two distinct epigenetic modification complexes (5΄ domain of CCAT1 binding Polycomb Repressive Complex 2 (PRC2) while 3΄ domain of CCAT1 binding SUV39H1) and modulate the histone methylation of promoter of SPRY4 (sprouty RTK signaling antagonist 4) in nucleus. In cytoplasm, CCAT1 regulates HOXB13 as a molecular decoy for miR-7, a microRNA that targets both CCAT1 and HOXB13, thus facilitating cell growth and migration. Together, our data demonstrated the important roles of CCAT1 in ESCC oncogenesis and might serve as targets for ESCC diagnosis and therapy.


Asunto(s)
Carcinoma de Células Escamosas/genética , Neoplasias Esofágicas/genética , Regulación Neoplásica de la Expresión Génica , Histonas/metabolismo , Proteínas de Homeodominio/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas del Tejido Nervioso/genética , ARN Largo no Codificante/metabolismo , Acetilación , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago , Femenino , Silenciador del Gen , Proteínas de Homeodominio/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Metiltransferasas/metabolismo , MicroARNs/metabolismo , Persona de Mediana Edad , Proteínas del Tejido Nervioso/metabolismo , Pronóstico , ARN Largo no Codificante/fisiología , Proteínas Represoras/metabolismo
8.
Cell Physiol Biochem ; 50(1): 136-149, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30278449

RESUMEN

BACKGROUND/AIMS: Most of estrogen receptor positive breast cancer patients respond well initially to endocrine therapies, but often develop resistance during treatment with selective estrogen receptor modulators (SERMs) such as tamoxifen. Altered expression and functions of microRNAs (miRNAs) have been reportedly associated with tamoxifen resistance. Thus, it is necessary to further elucidate the function and mechanism of miRNAs in tamoxifen resistance. METHODS: Tamoxifen sensitivity was validated by using Cell Counting Kit-8 in tamoxifen-sensitive breast cancer cells (MCF-7, T47D) and tamoxifen-resistant cells (MCF-7/TAM, T47D/ TAM). Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect the expression level of miR-449a in tamoxifen-sensitive/-resistant cells and patient serums. Dual-luciferase assay was used to identify the binding of miR-449a and predicted gene ADAM22. The expression level of ADAM22 was determined by qRT-PCR and western blotting in miR-449a +/- breast cancer cells. Subsequently, rescue experiments were carried out to identify the function of ADAM22 in miR-449a-reduced tamoxifen resistance. Finally, Gene ontology (GO) and Protein-protein interaction analyses were performed to evaluate the potential mechanisms of ADAM22 in regulating tamoxifen resistance. RESULTS: MiR-449a levels were downregulated significantly in tamoxifen-resistant breast cancer cells when compared with their parental cells, as well as in clinical breast cancer serum samples. Overexpression of miR-449a re-sensitized the tamoxifen-resistant breast cancer cells, while inhibition of miR-449a conferred tamoxifen resistance in parental cells. Luciferase assay identified ADAM22 as a direct target gene of miR-449a. Additionally, silencing of ADAM22 could reverse tamoxifen resistance induced by miR-449a inhibition in ER-positive breast cancer cells. GO analysis results showed ADAM22 was mainly enriched in the biological processes of cell adhesion, cell differentiation, gliogenesis and so on. Protein-protein interaction analyses appeared that ADAM22 might regulate tamoxifen resistance through PPARG, LGI1, KRAS and LYN. CONCLUSION: Decreased miR-449a causes the upregulation of ADAM22, which induces tamoxifen resistance of breast cancer cells. These results suggest that miR-449a, functioning by targeting ADAM22, contributes to the mechanisms underlying breast cancer endocrine resistance, which may provide a potential therapeutic strategy in ER-positive breast cancers.


Asunto(s)
Proteínas ADAM/metabolismo , Antineoplásicos Hormonales/farmacología , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/patología , Resistencia a Antineoplásicos/genética , MicroARNs/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Tamoxifeno/farmacología , Regiones no Traducidas 3' , Proteínas ADAM/antagonistas & inhibidores , Proteínas ADAM/genética , Antagomirs/metabolismo , Antineoplásicos Hormonales/uso terapéutico , Secuencia de Bases , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , Femenino , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , PPAR gamma/metabolismo , Proteínas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Alineación de Secuencia , Tamoxifeno/uso terapéutico
9.
Mol Cancer ; 14: 165, 2015 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-26336870

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide, and the biology of this cancer remains poorly understood. Recent evidence indicates that long non-coding RNAs (lncRNAs) are found to be dysregulated in a variety of cancers, including HCC. Taurine Up-regulated Gene 1 (TUG1), a 7.1-kb lncRNA, recruiting and binding to polycomb repressive complex 2 (PRC2), is found to be disregulated in non-small cell lung carcinoma (NSCLC) and esophageal squamous cell carcinoma (ESCC). However, its clinical significance and potential role in HCC remain unclear. METHODS AND RESULTS: In this study, expression of TUG1 was analyzed in 77 HCC tissues and matched normal tissues by using quantitative polymerase chain reaction (qPCR). TUG1 expression was up-regulated in HCC tissues and the higher expression of TUG1 was significantly correlated with tumor size and Barcelona Clinic Liver Cancer (BCLC) stage. Moreover, silencing of TUG1 expression inhibited HCC cell proliferation, colony formation, tumorigenicity and induced apoptosis in HCC cell lines. We also found that TUG1 overexpression was induced by nuclear transcription factor SP1 and TUG1 could epigeneticly repress Kruppel-like factor 2 (KLF2) transcription in HCC cells by binding with PRC2 and recruiting it to KLF2 promoter region. CONCLUSION: Our results suggest that lncRNA TUG1, as a growth regulator, may serve as a new diagnostic biomarker and therapy target for HCC.


Asunto(s)
Carcinoma Hepatocelular/genética , Factores de Transcripción de Tipo Kruppel/genética , Neoplasias Hepáticas/genética , ARN Largo no Codificante/biosíntesis , Adulto , Anciano , Apoptosis/genética , Carcinoma Hepatocelular/patología , Proliferación Celular/genética , Metilación de ADN/genética , Represión Epigenética/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células Hep G2 , Humanos , Factores de Transcripción de Tipo Kruppel/biosíntesis , Neoplasias Hepáticas/patología , Masculino , Persona de Mediana Edad , Complejo Represivo Polycomb 2/genética , Regiones Promotoras Genéticas , ARN Largo no Codificante/genética
10.
Mol Cancer ; 14: 82, 2015 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-25890171

RESUMEN

BACKGROUND: Mounting evidence indicates that long noncoding RNAs (lncRNAs) could play a pivotal role in cancer biology. However, the overall biological role and clinical significance of PVT1 in gastric carcinogenesis remains largely unknown. METHODS: Expression of PVT1 was analyzed in 80 GC tissues and cell lines by qRT-PCR. The effect of PVT1 on proliferation was evaluated by MTT and colony formation assays, and cell apoptosis was evaluated by Flow-cytometric analysis. GC cells transfected with shPVT1 were injected into nude mice to study the effect of PVT1 on tumorigenesis in vivo. RIP was performed to confirm the interaction between PVT1 and EZH2. ChIP was used to study the promoter region of related genes. RESULTS: The higher expression of PVT1 was significantly correlated with deeper invasion depth and advanced TNM stage. Multivariate analyses revealed that PVT1 expression served as an independent predictor for overall survival (p = 0.031). Further experiments demonstrated that PVT1 knockdown significantly inhibited the proliferation both in vitro and in vivo. Importantly, we also showed that PVT1 played a key role in G1 arrest. Moreover, we further confirmed that PVT1 was associated with enhancer of zeste homolog 2 (EZH2) and that this association was required for the repression of p15 and p16. To our knowledge, this is the first report showed that the role and the mechanism of PVT1 in the progression of gastric cancer. CONCLUSIONS: Together, these results suggest that lncRNA PVT1 may serve as a candidate prognostic biomarker and target for new therapies in human gastric cancer.


Asunto(s)
Proliferación Celular/genética , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , ARN Largo no Codificante/genética , Neoplasias Gástricas/genética , Animales , Apoptosis/genética , Biomarcadores de Tumor/genética , Carcinogénesis/genética , Línea Celular , Línea Celular Tumoral , Proteína Potenciadora del Homólogo Zeste 2 , Epigenómica/métodos , Puntos de Control de la Fase G1 del Ciclo Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Complejo Represivo Polycomb 2/genética , Pronóstico , Regiones Promotoras Genéticas/genética , Transfección/métodos
11.
Tumour Biol ; 36(7): 5341-51, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25672609

RESUMEN

SUZ12 is a core component of the polycomb repressive complex 2 (PRC2), which could silence gene transcription by generating trimethylation on lysine 27 residue of histone H3 (H3K27Me3). Meanwhile, SUZ12 has been found to be overexpressed in multiple cancers; however, the clinical significance and molecular mechanisms of SUZ12 controlling gastric cancer cell proliferation and metastasis are unclear. In this study, we found that SUZ12 expression was significantly increased in 64 gastric tumor tissues compared with normal tissues. Additionally, SUZ12 expression was associated with pathological stage, metastasis distance, and shorter overall survival of gastric cancer patients. Knockdown of SUZ12 expression impaired cell proliferation and invasion in vitro, leading to the inhibition of metastasis in vivo. Upregulation of SUZ12 was found to play a key role in gastric cancer cell proliferation and metastasis through the regulation of EMT and KLF2 expression.


Asunto(s)
Cadherinas/biosíntesis , Factores de Transcripción de Tipo Kruppel/biosíntesis , Complejo Represivo Polycomb 2/genética , Neoplasias Gástricas/genética , Adulto , Anciano , Animales , Cadherinas/genética , Línea Celular Tumoral , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Masculino , Ratones , Persona de Mediana Edad , Invasividad Neoplásica/genética , Metástasis de la Neoplasia , Proteínas de Neoplasias , Estadificación de Neoplasias , Complejo Represivo Polycomb 2/biosíntesis , Neoplasias Gástricas/patología , Factores de Transcripción , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Tumour Biol ; 36(4): 3075-84, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25501704

RESUMEN

Kruppel-like factor 2 (KLF2) expression is diminished in many malignancies. However, its expression and role in nonsmall-cell lung cancer (NSCLC) remain unknown. In this study, we found that KLF2 levels were decreased in NSCLC tissues compared with adjacent normal tissues. Its expression level was significantly correlated with TNM stages, tumor size, and lymph node metastasis. Moreover, patients with low levels of KLF2 expression had a relatively poor prognosis. Furthermore, knockdown of KLF2 expression by siRNA could promote cell proliferation, while ectopic expression of KLF2 inhibited cell proliferation and promoted apoptosis in NSCLC cells partly via regulating CDKN1A/p21 and CDKN2B/p15 protein expression. Our findings present that decreased KLF2 could be identified as a poor prognostic biomarker in NSCLC and regulate cell proliferation and apoptosis.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Factores de Transcripción de Tipo Kruppel/genética , Pronóstico , Adulto , Apoptosis/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Factores de Transcripción de Tipo Kruppel/biosíntesis , Metástasis Linfática , Masculino , Persona de Mediana Edad
13.
Dig Dis Sci ; 60(6): 1655-62, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25686741

RESUMEN

BACKGROUND: Long noncoding RNAs (lncRNAs) have been recently shown to play important regulatory roles in fundamental biological processes, and many of them are deregulated in several human cancers. LncRNA hypoxia-inducible factor 1alpha antisense RNA-2 (HIF1A-AS2) is overexpressed in nonpapillary clear-cell renal carcinomas and involved in cancer progression. AIM: This study was to evaluate the expression of HIF1A-AS2 in gastric cancer (GC) and further explore its biological function in GC cells. MATERIALS AND METHODS: Quantitative real-time polymerase chain reaction was used to detect the expression level of HIF1A-AS2 in GC tissues. The correlation of its expression with clinicopathological features was analyzed. Area under receiver operating characteristic curve (ROC(AUC)) was constructed to evaluate the diagnostic value of HIF1A-AS2. Besides, tumor cell proliferation was assessed following knockdown of HIF1A-AS2, by MTT and colony formation assay in vitro, and tumor formation assay in a nude mouse model in vivo. RESULTS: The expression of HIF1A-AS2 was upregulated in GC tumorous tissues compared with the adjacent normal tissues (P < 0.001). Its overexpression was correlated with TNM stages (P = 0.008), tumor invasion (P = 0.016), lymph node metastasis (P = 0.042), and poor prognosis (P = 0.001). In addition, ROC(AUC) of HIF1A-AS2 was up to 0.673 (95 % CI 0.596-0.744, P < 0.001). Moreover, knockdown of HIF1A-AS2 expression by siRNA could inhibit cell proliferation in vitro and tumorigenesis in vivo. CONCLUSIONS: HIF1A-AS2 is overexpressed in GC and may play a pivotal role in tumor cell proliferation. It can be used as a potential diagnostic and prognostic biomarker for GC.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , ARN sin Sentido/metabolismo , ARN Largo no Codificante/metabolismo , Neoplasias Gástricas/metabolismo , Anciano , Animales , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Proliferación Celular , Progresión de la Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunohistoquímica , Metástasis Linfática , Masculino , Ratones , Ratones Desnudos , Persona de Mediana Edad , Clasificación del Tumor , Invasividad Neoplásica , Pronóstico , ARN/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa , Neoplasias Gástricas/patología , Neoplasias Gástricas/cirugía , Tasa de Supervivencia , Transfección , Regulación hacia Arriba
14.
Mol Cancer ; 13: 68, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24655544

RESUMEN

BACKGROUND: Recent evidence indicates that long noncoding RNAs (lncRNAs) play a critical role in the regulation of cellular processes, such as differentiation, proliferation and metastasis. These lncRNAs are found to be dysregulated in a variety of cancers. BRAF activated non-coding RNA (BANCR) is a 693-bp transcript on chromosome 9 with a potential functional role in melanoma cell migration. The clinical significance of BANCR, and its' molecular mechanisms controlling cancer cell migration and metastasis are unclear. METHODS: Expression of BANCR was analyzed in 113 non-small cell lung cancer (NSCLC) tissues and seven NSCLC cell lines using quantitative polymerase chain reaction (qPCR) assays. Gain and loss of function approaches were used to investigate the biological role of BANCR in NSCLC cells. The effects of BANCR on cell viability were evaluated by MTT and colony formation assays. Apoptosis was evaluated by Hoechst staining and flow cytometry. Nude mice were used to examine the effects of BANCR on tumor cell metastasis in vivo. Protein levels of BANCR targets were determined by western blotting and fluorescent immunohistochemistry. RESULTS: BANCR expression was significantly decreased in 113 NSCLC tumor tissues compared with normal tissues. Additionally, reduced BANCR expression was associated with larger tumor size, advanced pathological stage, metastasis distance, and shorter overall survival of NSCLC patients. Reduced BANCR expression was found to be an independent prognostic factor for NSCLC. Histone deacetylation was involved in the downregulation of BANCR in NSCLC cells. Ectopic expression of BANCR impaired cell viability and invasion, leading to the inhibition of metastasis in vitro and in vivo. However, knockdown of BANCR expression promoted cell migration and invasion in vitro. Overexpression of BANCR was found to play a key role in epithelial-mesenchymal transition (EMT) through the regulation of E-cadherin, N-cadherin and Vimentin expression. CONCLUSION: We determined that BANCR actively functions as a regulator of EMT during NSCLC metastasis, suggesting that BANCR could be a biomarker for poor prognosis of NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Transición Epitelial-Mesenquimal/fisiología , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogénicas B-raf/biosíntesis , ARN Largo no Codificante/biosíntesis , Animales , Apoptosis/genética , Western Blotting , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Movimiento Celular/fisiología , Regulación hacia Abajo , Citometría de Flujo , Xenoinjertos , Humanos , Inmunohistoquímica , Estimación de Kaplan-Meier , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidad , Masculino , Ratones , Ratones Desnudos , Invasividad Neoplásica/genética , Pronóstico , Proteínas Proto-Oncogénicas B-raf/genética , ARN Largo no Codificante/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
15.
Tumour Biol ; 35(2): 1065-73, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24006224

RESUMEN

Long noncoding RNAs (lncRNAs) have emerged recently as major players in governing fundamental biological processes, and many of which are altered in expression and likely to have a functional role in tumorigenesis. Maternally expressed gene 3 (MEG3) is an imprinted gene located at 14q32 that encodes a lncRNA associated with various human cancers. However, its biological role and clinical significance in gastric cancer development and progression are unknown. In this study, to investigate the lncRNA MEG3 expression in gastric cancer, quantitative reverse-transcription polymerase chain reaction was conducted. We found that MEG3 levels were markedly decreased in gastric cancer tissues compared with adjacent normal tissues. Its expression level was significantly correlated with TNM stages, depth of invasion, and tumor size. Moreover, patients with low levels of MEG3 expression had a relatively poor prognosis. Furthermore, knockdown of MEG3 expression by siRNA could promote cell proliferation, while ectopic expression of MEG3 inhibited cell proliferation, promoted cell apoptosis, and modulated p53 expression in gastric cancer cell lines. By 5-aza-CdR treatment, we also observed that MEG3 expression can be modulated by DNA methylation. Our findings present that MEG3 downexpression can be identified as a poor prognostic biomarker in gastric cancer and regulate cell proliferation and apoptosis in vitro.


Asunto(s)
Carcinogénesis/genética , Proliferación Celular , ARN Largo no Codificante/biosíntesis , Neoplasias Gástricas/genética , Anciano , Apoptosis/genética , Biomarcadores de Tumor/genética , Metilación de ADN/genética , Regulación hacia Abajo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Pronóstico , ARN Largo no Codificante/antagonistas & inhibidores , ARN Largo no Codificante/genética , ARN Interferente Pequeño , Neoplasias Gástricas/patología
16.
Tumour Biol ; 35(8): 7587-94, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24793017

RESUMEN

Long non-coding RNAs (lncRNAs) have emerged as major players in governing fundamental biological processes, and many of which are misregulated in multiple cancers and likely to play a functional role in tumorigenesis. Therefore, identification of cancer-associated lncRNAs and investigation of their biological functions and molecular mechanisms are important for understanding the development and progression of cancer. lncRNA associated with microvascular invasion in HCC (lncRNA MVIH) was found to be generally upregulated in HCC. Moreover, MVIH overexpression could serve as an independent risk factor to predict poor RFS and promote tumor growth and metastasis via activating angiogenesis. However, its biological role and clinical significance in non-small cell lung cancer (NSCLC) development and progression is unknown. In this study, we found that lncRNA MVIH levels were increased in NSCLC tissues compared with adjacent normal tissues. Its expression level was significantly correlated with TNM stages, tumor size, and lymph node metastasis. Moreover, patients with high levels of MVIH expression had a relatively poor prognosis. Furthermore, knockdown of MVIH expression by siRNA could inhibit cell proliferation and invasion, while ectopic expression of MVIH promoted cell proliferation and invasion in NSCLC cells partly via regulating MMP2 and MMP9 protein expression. Our findings present that increased lncRNA MVIH could be identified as a poor prognostic biomarker in NSCLC and regulate cell proliferation and invasion.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/patología , Proliferación Celular , Neoplasias Pulmonares/patología , ARN Largo no Codificante/fisiología , Adulto , Anciano , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/mortalidad , Masculino , Metaloproteinasa 2 de la Matriz/análisis , Metaloproteinasa 9 de la Matriz/análisis , Persona de Mediana Edad , Invasividad Neoplásica , Pronóstico
17.
BMC Cancer ; 14: 319, 2014 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-24884417

RESUMEN

BACKGROUND: Gastric cancer is the second leading cause of cancer death and remains a major clinical challenge due to poor prognosis and limited treatment options. Long noncoding RNAs (lncRNAs) have emerged recently as major players in tumor biology and may be used for cancer diagnosis, prognosis, and potential therapeutic targets. Although downregulation of lncRNA GAS5 (Growth Arrest-Specific Transcript) in several cancers has been studied, its role in gastric cancer remains unknown. Our studies were designed to investigate the expression, biological role and clinical significance of GAS5 in gastric cancer. METHODS: Expression of GAS5 was analyzed in 89 gastric cancer tissues and five gastric cancer cell lines by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Over-expression and RNA interference (RNAi) approaches were used to investigate the biological functions of GAS5. The effect of GAS5 on proliferation was evaluated by MTT and colony formation assays, and cell apoptosis was evaluated by hochest stainning. Gastric cancer cells transfected with pCDNA3.1 -GAS5 were injected into nude mice to study the effect of GAS5 on tumorigenesis in vivo. Protein levels of GAS5 targets were determined by western blot analysis. Differences between groups were tested for significance using Student's t-test (two-tailed). RESULTS: We found that GAS5 expression was markedly downregulated in gastric cancer tissues, and associated with larger tumor size and advanced pathologic stage. Patients with low GAS5 expression level had poorer disease-free survival (DFS; P = 0.001) and overall survival (OS; P < 0.001) than those with high GAS5 expression. Further multivariable Cox regression analysis suggested that decreased GAS5 was an independent prognostic indicator for this disease (P = 0.006, HR = 0.412; 95%CI = 2.218-0.766). Moreover, ectopic expression of GAS5 was demonstrated to decrease gastric cancer cell proliferation and induce apoptosis in vitro and in vivo, while downregulation of endogenous GAS5 could promote cell proliferation. Finally, we found that GAS5 could influence gastric cancer cells proliferation, partly via regulating E2F1 and P21 expression. CONCLUSION: Our study presents that GAS5 is significantly downregulated in gastric cancer tissues and may represent a new marker of poor prognosis and a potential therapeutic target for gastric cancer intervention.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Proliferación Celular , ARN Largo no Codificante/metabolismo , Neoplasias Gástricas/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Distribución de Chi-Cuadrado , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Supervivencia sin Enfermedad , Regulación hacia Abajo , Factor de Transcripción E2F1/metabolismo , Femenino , Humanos , Estimación de Kaplan-Meier , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Análisis Multivariante , Estadificación de Neoplasias , Modelos de Riesgos Proporcionales , Interferencia de ARN , ARN Largo no Codificante/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/mortalidad , Neoplasias Gástricas/patología , Factores de Tiempo , Transfección , Carga Tumoral
18.
Oncol Res ; 32(4): 625-641, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38560562

RESUMEN

The cancer cell metastasis is a major death reason for patients with non-small cell lung cancer (NSCLC). Although researchers have disclosed that interleukin 17 (IL-17) can increase matrix metalloproteinases (MMPs) induction causing NSCLC cell metastasis, the underlying mechanism remains unclear. In the study, we found that IL-17 receptor A (IL-17RA), p300, p-STAT3, Ack-STAT3, and MMP19 were up-regulated both in NSCLC tissues and NSCLC cells stimulated with IL-17. p300, STAT3 and MMP19 overexpression or knockdown could raise or reduce IL-17-induced p-STAT3, Ack-STAT3 and MMP19 level as well as the cell migration and invasion. Mechanism investigation revealed that STAT3 and p300 bound to the same region (-544 to -389 nt) of MMP19 promoter, and p300 could acetylate STAT3-K631 elevating STAT3 transcriptional activity, p-STAT3 or MMP19 expression and the cell mobility exposed to IL-17. Meanwhile, p300-mediated STAT3-K631 acetylation and its Y705-phosphorylation could interact, synergistically facilitating MMP19 gene transcription and enhancing cell migration and invasion. Besides, the animal experiments exhibited that the nude mice inoculated with NSCLC cells by silencing p300, STAT3 or MMP19 gene plus IL-17 treatment, the nodule number, and MMP19, Ack-STAT3, or p-STAT3 production in the lung metastatic nodules were all alleviated. Collectively, these outcomes uncover that IL-17-triggered NSCLC metastasis involves up-regulating MMP19 expression via the interaction of STAT3-K631 acetylation by p300 and its Y705-phosphorylation, which provides a new mechanistic insight and potential strategy for NSCLC metastasis and therapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Ratones , Animales , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Interleucina-17/genética , Interleucina-17/metabolismo , Fosforilación , Neoplasias Pulmonares/patología , Acetilación , Ratones Desnudos , Transcripción Genética , Movimiento Celular/genética , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica
19.
Signal Transduct Target Ther ; 9(1): 73, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528050

RESUMEN

Patients with advanced gastric cancer typically face a grim prognosis. This phase 1a (dose escalation) and phase 1b (dose expansion) study investigated safety and efficacy of first-line camrelizumab plus apatinib and chemotherapy for advanced gastric or gastroesophageal junction adenocarcinoma. The primary endpoints included maximum tolerated dose (MTD) in phase 1a and objective response rate (ORR) across phase 1a and 1b. Phase 1a tested three dose regimens of camrelizumab, apatinib, oxaliplatin, and S-1. Dose regimen 1: camrelizumab 200 mg on day 1, apatinib 250 mg every other day, oxaliplatin 100 mg/m² on day 1, and S-1 40 mg twice a day on days 1-14. Dose regimen 2: same as dose regimen 1, but oxaliplatin 130 mg/m². Dose regimen 3: same as dose regimen 2, but apatinib 250 mg daily. Thirty-four patients were included (9 in phase 1a, 25 in phase 1b). No dose-limiting toxicities occurred so no MTD was identified. Dose 3 was set for the recommended phase 2 doses and administered in phase 1b. The confirmed ORR was 76.5% (95% CI 58.8-89.3). The median progression-free survival was 8.4 months (95% CI 5.9-not evaluable [NE]), and the median overall survival (OS) was not mature (11.6-NE). Ten patients underwent surgery after treatment and the multidisciplinary team evaluation. Among 24 patients without surgery, the median OS was 19.6 months (7.8-NE). Eighteen patients (52.9%) developed grade ≥ 3 treatment-emergent adverse events. Camrelizumab plus apatinib and chemotherapy showed favorable clinical outcomes and manageable safety for untreated advanced gastric cancer (ChiCTR2000034109).


Asunto(s)
Anticuerpos Monoclonales Humanizados , Piridinas , Neoplasias Gástricas , Humanos , Anticuerpos Monoclonales Humanizados/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Oxaliplatino , Piridinas/uso terapéutico , Neoplasias Gástricas/tratamiento farmacológico , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Quimioterapia Combinada/métodos
20.
Med Oncol ; 40(8): 226, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37405498

RESUMEN

While CAR-T cell therapy has shown success against hematological tumors, its effectiveness for solid tumors, including ovarian cancer, remains unsatisfactory. This study aimed to develop and evaluate the efficacy of novel chimeric antigen receptor T (CAR-T) cells targeting PTK7 through TREM1/DAP12 signaling against ovarian cancer. The expression of PTK7 in ovarian cancer tissues and cells was evaluated using immunohistochemical staining and flow cytometric analysis. The anti-tumor effects of PTK7 CAR-T cells were assessed in vitro using real-time cell analysis and enzyme-linked immunosorbent assay, and in vivo using a xenograft tumor model. PTK7 was significantly expressed in ovarian cancer tissues and cells. PTK7-targeting CAR-T cells based on TREM1/DAP12 signaling exhibited potent cytotoxicity against ovarian cancer cells expressing PTK7 in vitro, and effectively eradicated tumors in vivo. Our findings suggest that TREM1/DAP12-based PTK7 CAR-T cells have potential as a treatment strategy for ovarian cancer. Further studies are needed to evaluate the safety and efficacy of this approach in clinical trials.


Asunto(s)
Neoplasias Ováricas , Receptores Quiméricos de Antígenos , Humanos , Femenino , Neoplasias Ováricas/genética , Neoplasias Ováricas/terapia , Linfocitos T , Receptor Activador Expresado en Células Mieloides 1/metabolismo , Línea Celular Tumoral , Inmunoterapia Adoptiva , Ensayos Antitumor por Modelo de Xenoinjerto , Moléculas de Adhesión Celular/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA