Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Small ; : e2311649, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38552254

RESUMEN

X-ray detection and imaging are widely used in medical diagnosis, product inspection, security monitoring, etc. Large-scale polycrystalline perovskite thick films possess high potential for direct X-ray imaging. However, the notorious problems of baseline drift and high detection limit caused by ions migration are still remained. Here, ion migration is reduced by incorporating 2D perovskite into 3D perovskite, thereby increasing the ion activation energy. This approach hinders ion migration within the perovskite film, consequently suppressing baseline drift and reducing the lowest detection limit(LOD) of the device. As a result, the baseline drifting declines by 20 times and the LOD reduces to 21.1 nGy s-1, while the device maintains a satisfactory sensitivity of 5.6 × 103 µC Gy-1 cm-2. This work provides a new strategy to achieve low ion migration in large-scale X-ray detectors and may provide new thoughts for the application of mixed-dimension perovskite.

2.
Nanotechnology ; 34(24)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-36940472

RESUMEN

Various spectral bands provide different types of information, and information enhancement could be achieved by selective fusion of different spectral bands. The fused solar-blind Ultraviolet (UV)/Visible (VIS) bi-spectral sensing and imaging can provide the precise location of UV targets in virtue of VIS background, which has been increasingly promoted. However, most reported UV/VIS bi-spectral photodetectors (PDs) only have one single channel towards a broadband spectrum of both UV and VIS light, which cannot distinguish two kinds of signals, hindering the image fusion of bi-spectral signals. This work demonstrates the solar-blind UV/VIS bi-spectral PD based on vertically stacking perovskite of MAPbI3and ternary oxide of ZnGa2O4with independent and distinct response toward solar-blind UV and VIS light in a single pixel. The PD exhibits excellent sensing properties with anIon/Ioffratio of >107and 102, detectivity of >1010and 108Jones, and response decay time of 90µs and 16 ms for VIS and UV channels, respectively. The successful fusion of VIS and UV images suggests that our bi-spectral PD can be applied in the accurate identification of corona discharge and fire detection.

3.
Nano Lett ; 20(10): 6974-6980, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-32845157

RESUMEN

Radiative cooling, a passive cooling technique, has shown great potentials in recent years to lower the power consumption of air conditioning. With the ever-increasing cooling power being reported, the theoretical cooling limit of such a technique is still unclear. In this work, we proposed a theoretical limit imposing an upper bound for the attainable cooling power. To approach this limit, we exploited the localized surface plasmon resonance (LSPR) of self-doped In2O3 nanoparticles, which enhance the emissivity in both primary and secondary atmospheric windows. The measured cooling power of poly(methyl methacrylate) (PMMA) films containing 4.5% In2O3 nanoparticles is very close to the limit with the closest value only about 0.4 W/m2 below the limit. Hopefully, this work may help the researchers better evaluating the performance of their device in the future and pave the way for achieving even higher radiative cooling powers during the daytime operations with the help of LSPR.

4.
Nano Lett ; 18(12): 7628-7634, 2018 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-30457343

RESUMEN

Image sensor arrays are widely used in digital cameras, smartphones, and biorobots. However, most commercial image arrays rely on the dichroic prisms or a set of interference filters to distinguish characteristic color spectrum, which significantly increases the cost and fabrication processing complexity. In this work, an ultranarrow response photodetector with full-width at half-maximum being ∼12 nm and specific detectivity over 1011 Jones at 545 nm are successfully achieved in CsPbBr3 polycrystalline films using freeze-drying casting method to adjust the surface-charge recombination. To our best knowledge, this is the narrowest spectrum response for perovskite photodetectors in the visible light waveband. More importantly, a series of narrowband photodetectors are developed to enhance diverse selectivity for target signals covering from blue light to red light via bandgap tuning in CsPbX3 by tailoring the halide component. Finally, an integrated sensing array with CsPbX3 (X = Cl, Br, I) narrowband photodetectors acting as color recognition cones is constructed, which presents clear color and shape recognition paving the way for commercialization of perovskite photodetector in artificial vision.


Asunto(s)
Cesio/química , Plomo/química , Nanoestructuras/química , Biónica , Compuestos de Calcio/química , Cristalización , Liofilización , Halogenación , Humanos , Luz , Óxidos/química , Titanio/química , Visión Ocular
5.
J Am Chem Soc ; 140(6): 2054-2057, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29377679

RESUMEN

Two cheliform non-fullerene acceptors, DTPC-IC and DTPC-DFIC, based on a highly electron-rich core, dithienopicenocarbazole (DTPC), are synthesized, showing ultra-narrow bandgaps (as low as 1.21 eV). The two-dimensional nitrogen-containing conjugated DTPC possesses strong electron-donating capability, which induces intense intramolecular charge transfer and intermolecular π-π stacking in derived acceptors. The solar cell based on DTPC-DFIC and a spectrally complementary polymer donor, PTB7-Th, showed a high power conversion efficiency of 10.21% and an extremely low energy loss of 0.45 eV, which is the lowest among reported efficient OSCs.

6.
Biochim Biophys Acta ; 1864(3): 308-316, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26724776

RESUMEN

Rheumatoid arthritis (RA) is a systemic autoimmune disease whose main symptom is a heightened inflammatory response in synovial tissues. To verify the anti-arthritic activities of Achyranthes aspera and its possible therapy-related factors on the pathogenesis of RA, the saponins in A. aspera root were isolated and identified to treat the collagen-induced arthritis (CIA) rats. Phytochemical analysis isolated and identified methyl caffeate, 25-S-inokosterone, 25-S-inokosterone ß-D-glucopyranosyl 3-(O-ß-D-glucopyranosyloxy)-oleanolate, and ß-D-glucopyranosyl 3-(O-ß-D-galactopyranosyl (1→2)(O-ß-D-glucopyranosyloxy)-oleanolate as main compounds in the root of A. aspera. Proteomics was performed to determine the differentially expressed proteins in either inflamed or drug-treated synovium of CIA rats. Treatment resulted in dramatically decreased paw swelling, proliferation of inflammatory cells, and bone degradation. Fibrinogen, procollagen, protein disulfide-isomerase A3, and apolipoprotein A-I were all increased in inflamed synovial tissues and were found to decrease when administered drug therapy. Furthermore, Alpha-1-antiproteinase and manganese superoxide dismutase were both increased in drug-treated synovial tissues. The inhibition of RA progression shows that A. aspera is a promising candidate for future treatment of human arthritis. Importantly, the total saponins found within A. aspera are the active component. Finally, autoantigens such as fibrinogen and collagen could act as inducers of RA due to their aggravation of inflammation. Given this, it is possible that the vimentin and PDIA3 could be the candidate biomarkers specific to Achyranthes saponin therapy for rheumatoid arthritis in synovial membrane.


Asunto(s)
Artritis Experimental/tratamiento farmacológico , Artritis Reumatoide/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Proteína Disulfuro Isomerasas/biosíntesis , Achyranthes/química , Animales , Artritis Experimental/genética , Artritis Experimental/patología , Artritis Reumatoide/inducido químicamente , Artritis Reumatoide/genética , Artritis Reumatoide/patología , Biomarcadores/metabolismo , Ácidos Cafeicos/administración & dosificación , Colestenos/administración & dosificación , Colágeno/toxicidad , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Inflamación/genética , Inflamación/patología , Ratas , Membrana Sinovial/efectos de los fármacos , Membrana Sinovial/patología
7.
Biochim Biophys Acta Proteins Proteom ; 1865(4): 404-413, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28087425

RESUMEN

Lonicera japonica Thunb., also known as Jin Yin Hua and Japanese honeysuckle, is used as a herbal medicine in Asian countries. Its flowers have been used in folk medicine in the clinic and in making food or healthy beverages for over 1500years in China. To investigate the molecular processes involved in L. japonica development from buds to flowers exposed to UV radiation, a comparative proteomics analysis was performed. Fifty-four proteins were identified as differentially expressed, including 42 that had increased expression and 12 that had decreased expression. The levels of the proteins related to glycolysis, TCA/organic acid transformation, major carbohydrate metabolism, oxidative pentose phosphate, stress, secondary metabolism, hormone, and mitochondrial electron transport were increased during flower opening process after exposure to UV radiation. Six metabolites in L. japonica buds and flowers were identified and relatively quantified using LC-MS/MS. The antioxidant activity was performed using a 1,1-diphenyl-2-picrylhydrazyl assay, which revealed that L. japonica buds had more activity than the UV irradiated flowers. This suggests that UV-B radiation induces production of endogenous ethylene in L. japonica buds, thus facilitating blossoming of the buds and activating the antioxidant system. Additionally, the higher metabolite contents and antioxidant properties of L. japonica buds indicate that the L. japonica bud stage may be a more optimal time to harvest than the flower stage when using for medicinal properties.


Asunto(s)
Flores/metabolismo , Lonicera/metabolismo , Metaboloma/efectos de la radiación , Proteoma/biosíntesis , Rayos Ultravioleta , Ciclo del Ácido Cítrico/efectos de la radiación , Glucólisis/efectos de la radiación
8.
J Proteome Res ; 15(1): 166-81, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26573373

RESUMEN

Lonicera japonica Thunb. flower is a well-known medicinal plant that has been widely used for the treatment of human disease. To explore the molecular mechanisms underlying the biological activities of L. japonica immature flower buds, a gel-free/label-free proteomic technique was used in combination with combinatorial peptide ligand libraries (CPLL) and polyethylene glycol (PEG) fractionation for the enrichment of low-abundance proteins and removal of high-abundance proteins, respectively. A total of 177, 614, and 529 proteins were identified in crude protein extraction, CPLL fractions, and PEG fractions, respectively. Among the identified proteins, 283 and 239 proteins were specifically identified by the CPLL and PEG methods, respectively. In particular, proteins related to the oxidative pentose phosphate pathway, signaling, hormone metabolism, and transport were highly enriched by CPLL and PEG fractionation compared to crude protein extraction. A total of 28 secondary metabolism-related proteins and 25 metabolites were identified in L. japonica immature flower buds. To determine the specificity of the identified proteins and metabolites for L. japonica immature flower buds, Cerasus flower buds were used, which resulted in the abundance of hydroxymethylbutenyl 4-diphosphate synthase in L. japonica immature flower buds being 10-fold higher than that in Cerasus flower buds. These results suggest that proteins related to secondary metabolism might be responsible for the biological activities of L. japonica immature flower buds.


Asunto(s)
Flores/metabolismo , Lonicera/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Precipitación Química , Ligandos , Malus/metabolismo , Redes y Vías Metabólicas , Biblioteca de Péptidos , Proteínas de Plantas/aislamiento & purificación , Polietilenglicoles/química , Proteoma/aislamiento & purificación , Proteómica , Espectrometría de Masas en Tándem
9.
Nano Lett ; 15(10): 6514-20, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26389692

RESUMEN

In this communication, we report an efficient and flexible perovskite solar cell based on formamidinium lead trihalide (FAPbI3) with simplified configuration. The device achieved a champion efficiency of 12.70%, utilizing direct contact between metallic indium tin oxide (ITO) electrode and perovskite absorber. The underlying working mechanism is proposed subsequently, via a systematic investigation focusing on the heterojunction within this device. A significant charge storage has been observed in the perovskite, which is believed to generate photovoltage and serves as the driving force for charge transferring from the absorber to ITO electrode as well. More importantly, this simplified device structure on flexible substrates suggests its compatibility for scale-up fabrication, which paves the way for commercialization of perovskite photovoltaic technology.

10.
Nano Lett ; 15(4): 2402-8, 2015 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-25807395

RESUMEN

In this study, we communicate an investigation on efficient CH3NH3PbI3-based solar cells with carbon electrode using mesoporous TiO2 and NiO layers as electron and hole selective contacts. The device possesses an appreciated power conversion efficiency of 14.9% under AM 1.5G illumination. The detailed information can be disclosed with impedance spectroscopy via tuning the interfaces between CH3NH3PbI3 and different charge selective contacts. The results clearly show charge accumulation at the interface of CH3NH3PbI3. The NiO is believed to efficiently accelerate charge extraction to the external circuit. The extracted charge could improve photovoltaic performance by shifting hole Fermi level down, achieving a high device photovoltage. A fast interfacial recombination at the interface of CH3NH3PbI3/electron selective contact layer (mesoporous TiO2), occurring in millisecond domains, is the critical issue for charge carrier recombination loss.

11.
Sci Technol Adv Mater ; 16(3): 036004, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27877815

RESUMEN

The efficiency of perovskite solar cells (PSCs) has been improved from 9.7 to 19.3%, with the highest value of 20.1% achieved in 2014. Such a high photovoltaic performance can be attributed to optically high absorption characteristics and balanced charge transport properties with long diffusion lengths of the hybrid lead halide perovskite materials. In this review, some fundamental details of hybrid lead iodide perovskite materials, various fabrication techniques and device structures are described, aiming for a better understanding of these materials and thus highly efficient PSC devices. In addition, some advantages and open issues are discussed here to outline the prospects and challenges of using perovskites in commercial photovoltaic devices.

12.
Chemphyschem ; 15(6): 1182-9, 2014 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-24729527

RESUMEN

Sensitizers are responsible for the light harvesting and the charge injection in dye-sensitized solar cells (DSSCs). A fast dye-regeneration process is necessary to obtain highly efficient DSSC devices. Herein, dye-regeneration rates of two DSSC device types, that is, the reduction of immediately formed photo-oxidized sensitizers (ruthenium complex C106TBA and porphyrin LD14, k(ox)') by iodide ions (I(-)) and [Co(bpy)3](2+), and the oxidation of formed photo-reduced sensitizers (organic dye P1, k(re)') by triiodide ions (I3(-)) and the disulfide dimer (T2) are investigated by scanning electrochemical microscopy (SECM). We provide a thorough experimental verification of the feedback mode to compare the kinetics for dye-regeneration by using the above mentioned mediators. The charge recombination at the dye/semiconductor/electrolyte interface is further investigated by SECM. A theoretical model is applied to interpret the current response at the tip under short-circuit conditions, providing important information on factors that govern the dynamics of dye-regeneration onto the dye-sensitized heterojunction.

13.
Research (Wash D C) ; 7: 0385, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38803505

RESUMEN

Ultraviolet (UV) light, invisible to the human eye, possesses both benefits and risks. To harness its potential, UV photodetectors (PDs) have been engineered. These devices can convert UV photons into detectable signals, such as electrical impulses or visible light, enabling their application in diverse fields like environmental monitoring, healthcare, and aerospace. Wide bandgap semiconductors, with their high-efficiency UV light absorption and stable opto-electronic properties, stand out as ideal materials for UV PDs. This review comprehensively summarizes recent advancements in both traditional and emerging wide bandgap-based UV PDs, highlighting their roles in UV imaging, communication, and alarming. Moreover, it examines methods employed to enhance UV PD performance, delving into the advantages, challenges, and future research prospects in this area. By doing so, this review aims to spark innovation and guide the future development and application of UV PDs.

14.
ACS Appl Mater Interfaces ; 16(9): 12106-12114, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38410909

RESUMEN

Solution-processed lead halide perovskite single crystals (LHPSCs) are believed to have great potential in gamma-ray spectroscopy. However, obtaining low-defect LHPSCs from a solution at low temperatures is difficult compared to obtaining Bridgman single crystals such as CdTe and Si. Herein, noise from the intrinsic defects of LHPSCs is considered as the main problem hindering their gamma-ray detection performance. By isolating the defect-induced holes in LHPSCs via energy barriers, we show that NIN photodiodes based on three types of LHPSCs, i.e., MAPbBr3 (MA = CH3NH3), MAPbBr2.5Cl0.5, and cascade LHPSCs, have demonstrated good energy resolution in the range of 6.7-10.3% for 662 keV 137Cs gamma-ray photons. The noise for >10 mm3 devices is low, in the order of 340-860 electrons, and the electron collection efficiency reaches 23-43%. These results pave the way for obtaining low-cost, large, high energy-resolution gamma-ray detectors at room temperature (300 K).

15.
J Healthc Qual ; 46(4): 197-202, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38214648

RESUMEN

ABSTRACT: Learning from the healthcare system's response to the COVID-19 pandemic is essential to better prepare for potential future crises. We sought to assess mortality rates for patients admitted for acute decompensated heart failure (HF) and to analyze which factors demonstrated a statistically significant correlation with this primary endpoint. We performed a retrospective analysis of patients hospitalized with a primary diagnosis of acute decompensated HF within the New York City Health and Hospitals 11-hospital system across the different COVID surge periods. Mortality information was collected in 4,405 participants (mean [SD] age 70.54 [14.44] years, 1885 [42.87%] female).The highest mortality existed in the first surge (9.02%), then improved to near prepandemic levels (3.65%) in the second (3.91%) and third surges (5.94%, p < 0.0001). In-hospital mortality inversely correlated with receipt of a COVID-19 vaccination, but had no correlation with left ventricular ejection fraction or the number of vaccination doses. Mortality for acute decompensated HF patients improved after the first surge, suggesting that hospitals adequately adapted to provide quality care. As future infectious outbreaks may occur, emergency preparedness must ensure that adequate focus and resources remain for other clinical entities, such as HF, to ensure optimal care is delivered across all areas of illness.


Asunto(s)
COVID-19 , Insuficiencia Cardíaca , Mortalidad Hospitalaria , SARS-CoV-2 , Humanos , Ciudad de Nueva York/epidemiología , COVID-19/mortalidad , COVID-19/epidemiología , Insuficiencia Cardíaca/mortalidad , Femenino , Masculino , Anciano , Estudios Retrospectivos , Persona de Mediana Edad , Anciano de 80 o más Años , Pandemias
16.
Nat Struct Mol Biol ; 31(3): 465-475, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38316881

RESUMEN

The plasma membrane is enriched for receptors and signaling proteins that are accessible from the extracellular space for pharmacological intervention. Here we conducted a series of CRISPR screens using human cell surface proteome and integrin family libraries in multiple cancer models. Our results identified ITGAV (integrin αV) and its heterodimer partner ITGB5 (integrin ß5) as the essential integrin α/ß pair for cancer cell expansion. High-density CRISPR gene tiling further pinpointed the integral pocket within the ß-propeller domain of ITGAV for integrin αVß5 dimerization. Combined with in silico compound docking, we developed a CRISPR-Tiling-Instructed Computer-Aided (CRISPR-TICA) pipeline for drug discovery and identified Cpd_AV2 as a lead inhibitor targeting the ß-propeller central pocket of ITGAV. Cpd_AV2 treatment led to rapid uncoupling of integrin αVß5 and cellular apoptosis, providing a unique class of therapeutic action that eliminates the integrin signaling via heterodimer dissociation. We also foresee the CRISPR-TICA approach to be an accessible method for future drug discovery studies.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Humanos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Membrana Celular
17.
Sci Adv ; 10(8): eadk3127, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38394203

RESUMEN

Epigenetic dysregulation has been reported in multiple cancers including leukemias. Nonetheless, the roles of the epigenetic reader Tudor domains in leukemia progression and therapy remain unexplored. Here, we conducted a Tudor domain-focused CRISPR screen and identified SGF29, a component of SAGA/ATAC acetyltransferase complexes, as a crucial factor for H3K9 acetylation, ribosomal gene expression, and leukemogenesis. To facilitate drug development, we integrated the CRISPR tiling scan with compound docking and molecular dynamics simulation, presenting a generally applicable strategy called CRISPR-Scan Assisted Drug Discovery (CRISPR-SADD). Using this approach, we identified a lead inhibitor that selectively targets SGF29's Tudor domain and demonstrates efficacy against leukemia. Furthermore, we propose that the structural genetics approach used in our study can be widely applied to diverse fields for de novo drug discovery.


Asunto(s)
Leucemia , Dominio Tudor , Humanos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Acetiltransferasas/metabolismo , Descubrimiento de Drogas , Leucemia/tratamiento farmacológico , Leucemia/genética
18.
Chem Commun (Camb) ; 59(35): 5156-5173, 2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37042042

RESUMEN

Organic-inorganic halide perovskites (HPs) have attracted respectable interests as active layers in solar cells, light-emitting diodes, photodetectors, etc. Besides the promising optoelectronic properties and solution-processed preparation, the soft lattice in HPs leads to flexible and versatile compositions and structures, providing an effective platform to regulate the bandgaps and optoelectronic properties. However, conventional solution-processed HPs are homogeneous in composition. Therefore, it often requires the cooperation of multiple devices in order to achieve multi-band detection or emission, which increases the complexity of the detection/emission system. In light of this, the construction of a multi-component compositional gradient in a single active layer has promising prospects. In this review, we summarize the gradient engineering methods for different forms of HPs. The advantages and limitations of these methods are compared. Moreover, the entropy-driven ion diffusion favors compositional homogeneity, thus the stability issue of the gradient is also discussed for long-term applications. Furthermore, applications based on these compositional gradient HPs will also be presented, where the gradient bandgap introduced therein can facilitate carrier extraction, and the multi-components on one device facilitate functional integration. It is expected that this review can provide guidance for the further development of gradient HPs and their applications.

19.
iScience ; 26(10): 107935, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37841587

RESUMEN

The halide lead perovskite single crystals (HLPSCs) have great potential in gamma-ray detection with high attenuation coefficient, strong defects tolerance, and large mobility-lifetime product. However, mobile halide ions would migrate under high external bias, which would both weaken the gamma-ray response and cause additional noise. Here, we report the gamma-ray PIN photodiodes made of cascade HLPSCs including both ion-formed and electron-hole-formed electrical junctions that could suppress the ions migration and improve the charges collection. Our photodiodes based on cascade HLPSCs (MAPbBr3/MAPbBr2.5Cl0.5/MAPbCl3) show a wide halide-ion-formed depletion layer of ∼52 µm. The built-in potential along the wide ionic-formed junction ensures a high mobility-lifetime product of 1.1 × 10-2 cm2V-1. As a result, our gamma-ray PIN photodiodes exhibit compelling response to 241Am, 137Cs, and 60Co; the energy resolution can reach 9.4%@59.5keV and 5.9%@662keV, respectively. This work provides a new path toward constructing high-performance gamma-ray detectors based on HLPSCs.

20.
ACS Appl Mater Interfaces ; 15(48): 56526-56536, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38014498

RESUMEN

Sensitive thermometry or thermography by responding to blackbody radiation is urgently desired in the intelligent information life, including scientific research, medical diagnosis, remote sensing, defense, etc. Even though thermography techniques based on infrared sensing have undergone unprecedented development, the poor compatibility with common optical components and the high diffraction limit impose an impediment to their integration into the established photonic integrated circuit or the realization of high-spatial-resolution and high-thermal-resolution imaging. In this work, we present a sensitive temperature-dependent visible photon detection in Bi-doped MAPbX3 (X = Cl, Br, and I) and employ it for uncooled thermography. Systematic measurements reveal that the Bi dopant introduces trap states in MAPbX3, thermal energy facilitates the carriers jumping from trap states to the conduction band, while the vacancies of trap states ensure the sequential absorption of visible photons with energy less than the band gap. Subsequently, the change of response toward the visible photon is applied to construct the thermograph, and it possesses a specific sensitivity of 2.11% K-1 along temperature variation. As a result, our thermograph presents a temperature resolution of 0.21 nA K-1, a high responsivity of 2.06 mA W-1, and a high detectivity of 2.08 × 109 Jones at room temperature. Furthermore, remote thermal imaging is successfully achieved with our thermograph.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA