Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202416154, 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39400436

RESUMEN

Multi-resonance thermally activated delayed fluorescence (MR-TADF) molecules have experienced great success in organic light-emitting diodes (OLEDs) owing to their outstanding quantum efficiencies and narrow full width at half-maximums (FWHMs). However, the reverse intersystem crossing (RISC) rates of MR-TADF emitters are usually small, which will lead to relatively long triplet exciton lifetime and severe efficiency roll-off. Here, we report an effective molecular design strategy to introduce multichannel RISC pathways and thus increase RISC rates without compromising the color fidelity and emission efficiency by the "hybridized long-short axis (HLSA)" strategy. The TPA-CN-BN shows a near-unity photoluminescence quantum yield, rapid RISC rate of 1.4 × 105 s-1, narrow FWHM of 23 nm, and small singlet-triplet energy gap (ΔEST) of 0.06 eV in solution. The non-sensitized OLED based on TPA-CN-BN exhibits a narrowband emission with the FWHM of 31 nm, in company with external quantum efficiency (EQE) of 37.9%. Notably, the device exhibits the low efficiency roll-off as the EQEs maintain 34.8% and 21.8% at 100 and 1000 cd m-2, respectively, representing the best performance for single-host OLEDs based on the BCzBN skeleton. This study provides a fresh and promising approach to realize high-performance OLEDs with high color purity and remarkable device efficiency.

2.
ACS Appl Mater Interfaces ; 15(40): 47307-47316, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37750758

RESUMEN

Developing high-efficiency nondoped blue organic light-emitting diodes (OLEDs) with high color purity and low-efficiency roll-off is vital for display and lighting applications. Herein, we developed two asymmetric D-π-A blue emitters, PIAnTP and PyIAnTP, in which triphenylene is first utilized as a functional acceptor. The relatively weak charge transfer (CT) properties, rigid molecular structures, and multiple supramolecular interactions in PIAnTP and PyIAnTP can significantly enhance the fluorescence efficiency and suppress the structural relaxations to obtain a narrowband blue emission. The photophysical experiments and theoretical simulations reveal that they both exhibit a typical hybridized local and charge-transfer (HLCT) excited state and achieve high external quantum efficiency (EQE) via a "hot exciton" channel. As a result, PIAnTP- and PyIAnTP-based nondoped devices realize blue emission at 456 and 464 nm, corresponding to CIE coordinates of (0.16, 0.14) and (0.16, 0.19), narrow full width at half-maximums of 52 and 60 nm, and the high EQEs of 8.36 and 8.69%, respectively. More importantly, the PIAnTP- and PyIAnTP-based nondoped devices show small EQE roll-offs of only 5.9 and 2.4% at 1000 cd m-2, respectively. These results signify an advance in designing a highly efficient blue emitter for nondoped OLEDs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA