Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Plant Cell ; 28(5): 1200-14, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27099260

RESUMEN

Organ growth is determined by a coordinated combination of cell proliferation and cell growth and differentiation. Endoreduplication is often coupled with cell growth and differentiation, but the genetic and molecular mechanisms that link endoreduplication with cell and organ growth are largely unknown. Here, we describe UBIQUITIN-SPECIFIC PROTEASE14 (UBP14), encoded by the DA3 gene, which functions as a negative regulator of endoreduplication. The Arabidopsis thaliana da3-1 mutant shows large cotyledons, leaves, and flowers with higher ploidy levels. UBP14 acts along with UV-B-INSENSITIVE4 (UVI4), an inhibitor of the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase, to repress endoreduplication. Also, UBP14 functions antagonistically with CELL CYCLE SWITCH52 A1 (CCS52A1), an activator of APC/C, to regulate endoreduplication. UBP14 physically associates with UVI4 both in vitro and in vivo but does not directly interact with CCS52A1. Further results reveal that UBP14 influences the stability of cyclin A2;3 (CYCA2;3) and cyclin-dependent kinase B1;1 (CDKB1;1), two downstream components of the APC/C Thus, our findings show how endoreduplication is linked with cell and organ growth by revealing important genetic and molecular functions for the ubiquitin-specific protease UBP14 and for the key cell cycle regulators UVI4, CCS52A1, CYCA2;3, and CDKB1;1.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Endopeptidasas/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Endopeptidasas/genética , Regulación de la Expresión Génica de las Plantas , Unión Proteica , Proteasas Ubiquitina-Específicas/genética
2.
Plant Cell ; 26(2): 665-77, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24585836

RESUMEN

Although the control of organ size is a fundamental question in developmental biology, little is known about the genetic and molecular mechanisms that determine the final size of seeds in plants. We previously demonstrated that the ubiquitin receptor DA1 acts synergistically with the E3 ubiquitin ligases DA2 and ENHANCER1 OF DA1 (EOD1)/BIG BROTHER to restrict seed growth in Arabidopsis thaliana. Here, we describe UBIQUITIN-SPECIFIC PROTEASE15 (UBP15), encoded by SUPPRESSOR2 OF DA1 (SOD2), which acts maternally to regulate seed size by promoting cell proliferation in the integuments of ovules and developing seeds. The sod2/ubp15 mutants form small seeds, while overexpression of UBP15 increases seed size of wild-type plants. Genetic analyses indicate that UBP15 functions antagonistically in a common pathway with DA1 to influence seed size, but does so independently of DA2 and EOD1. Further results reveal that DA1 physically associates with UBP15 in vitro and in vivo and modulates the stability of UBP15. Therefore, our findings establish a genetic and molecular framework for the regulation of seed size by four ubiquitin-related proteins DA1, DA2, EOD1, and UBP15 and suggest that they are promising targets for increasing seed size in crops.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/anatomía & histología , Arabidopsis/enzimología , Proteínas con Dominio LIM/metabolismo , Semillas/anatomía & histología , Proteasas Ubiquitina-Específicas/metabolismo , Arabidopsis/genética , Proliferación Celular , Estabilidad de Enzimas , Epistasis Genética , Genes de Plantas , Mutación , Tamaño de los Órganos , Fenotipo , Unión Proteica , Semillas/citología , Semillas/genética , Supresión Genética
3.
Brain Behav Immun ; 66: 332-346, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28751019

RESUMEN

The mechanisms underlying neuroinflammation following cerebral ischemia remain unclear. Hydrogen sulfide (H2S), a newly identified gasotransmitter, has been reported to regulate inflammation. In the current study, we investigated whether the endogenous H2S production pathway contributed to microglia-mediated neuroinflammation following stroke. We used a mouse middle cerebral artery occlusion (MCAO) model and an in vitro cellular model to mimic ischemia-induced microglial neuroinflammation. Expression of the H2S synthase cystathionine ß-synthase (CBS) and H2S synthetic activity were rapidly decreased in the ischemic brain tissue following MCAO. Consistently, when cultured microglia were polarized toward a pro-inflammatory phenotype with conditioned medium collected from neurons that had been subjected to oxygen-glucose deprivation (OGD neuron CM), they displayed reduced CBS expression and H2S production. Enhancing H2S bioavailability either by overexpressing CBS or by supplementing with exogenous H2S donors promoted a shift in microglial polarization from ischemia-induced pro-inflammatory phenotypes toward anti-inflammatory phenotypes. Mechanistically, microglia that were exposed to OGD neuron CM displayed reduced activation of AMP-activated protein kinase (AMPK), which was rescued by overexpressing CBS or by supplementing with H2S donors. Moreover, the promoting effects of H2S donors on microglial anti-inflammatory polarization were abolished by an AMPK inhibitor or CaMKKß inhibitor. Our results suggested that reduced CBS-H2S-AMPK cascade activity contributed to microglia-mediated neuroinflammation following stroke. Targeting the CBS-H2S pathway is a promising therapeutic approach for ischemic stroke.


Asunto(s)
Isquemia Encefálica/metabolismo , Cistationina betasintasa/metabolismo , Encefalitis/metabolismo , Sulfuro de Hidrógeno/metabolismo , Microglía/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Isquemia Encefálica/complicaciones , Células Cultivadas , Corteza Cerebral , Encefalitis/etiología , Expresión Génica , Ratones Endogámicos C57BL
4.
Plant J ; 80(4): 582-91, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25182777

RESUMEN

Long terminal repeat (LTR) retrotransposons are the major DNA components of flowering plants. They are generally enriched in pericentromeric heterochromatin regions of their host genomes, which could result from the preferential insertion of LTR retrotransposons and the low effectiveness of purifying selection in these regions. To estimate the relative importance of the actions of these two factors on their distribution pattern, the LTR retrotransposons in Solanum lycopersicum (tomato) plants were characterized at the genome level, and then the distribution of young elements was compared with that of relatively old elements. The current data show that old elements are mainly located in recombination-suppressed heterochromatin regions, and that young elements are preferentially located in the gene-rich euchromatic regions. Further analysis showed a negative correlation between the insertion time of LTR retrotransposons and the recombination rate. The data also showed there to be more solo LTRs in genic regions than in intergenic regions or in regions close to genes. These observations indicate that, unlike in many other plant genomes, the current LTR retrotransposons in tomatoes have a tendency to be preferentially located into euchromatic regions, probably caused by their severe suppression of activities in heterochromatic regions. These elements are apt to be maintained in heterochromatin regions, probably as a consequence of the pericentromeric effect in tomatoes. These results also indicate that local recombination rates and intensities of purifying selection in different genomic regions are largely responsible for structural variation and non-random distribution of LTR retrotransposons in tomato plants.


Asunto(s)
Eucromatina/genética , Retroelementos , Solanum lycopersicum/genética , Evolución Molecular , Genoma de Planta , Heterocromatina , Recombinación Genética , Secuencias Repetidas Terminales
5.
New Phytol ; 191(2): 360-375, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21466556

RESUMEN

The subcellular distribution of the PIN-FORMED (PIN) family of auxin transporters plays a critical role in auxin gradient-mediated developmental processes, including lateral root formation and gravitropic growth. Here, we report two distinct aspects of CORONATINE INSENSITIVE 1 (COI1)- and AUXIN RESISTANT 1 (AXR1)-dependent methyl jasmonate (MeJA) effects on PIN2 subcellular distribution: at lower concentration (5 µM), MeJA inhibits PIN2 endocytosis, whereas, at higher concentration (50 µM), MeJA reduces PIN2 accumulation in the plasma membrane. We show that mutations of ASA1 (ANTHRANILATE SYNTHASE a1) and the TIR1/AFBs (TRANSPORT INHIBITOR RESPONSE 1/AUXIN-SIGNALING F-BOX PROTEINs) auxin receptor genes impair the inhibitory effect of 5 µM MeJA on PIN2 endocytosis, suggesting that a lower concentration of jasmonate inhibits PIN2 endocytosis through interaction with the auxin pathway. In contrast, mutations of ASA1 and the TIR1/AFBs auxin receptor genes enhance, rather than impair, the reduction effect of 50 µM MeJA on the plasma membrane accumulation of PIN2, suggesting that this action of jasmonate is independent of the auxin pathway. In addition to the MeJA effects on PIN2 endocytosis and plasma membrane residence, we also show that MeJA alters lateral auxin redistribution on gravi-stimulation, and therefore impairs the root gravitropic response. Our results highlight the importance of jasmonate-auxin interaction in the coordination of plant growth and the adaptation response.


Asunto(s)
Acetatos/farmacología , Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Ciclopentanos/farmacología , Endocitosis/efectos de los fármacos , Oxilipinas/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Antranilato Sintasa/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Transporte Biológico/efectos de los fármacos , Membrana Celular/metabolismo , Regulación hacia Abajo , Proteínas F-Box/genética , Regulación de la Expresión Génica de las Plantas , Genes Reporteros , Gravitropismo/efectos de los fármacos , Ácidos Indolacéticos/metabolismo , Meristema/efectos de los fármacos , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Mutación , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Receptores de Superficie Celular/genética , Proteínas Recombinantes de Fusión , Transducción de Señal/efectos de los fármacos
6.
Sci Rep ; 5: 17644, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26631625

RESUMEN

Recent sequencing of the Oriental pear (P. bretschneideri Rehd.) genome and the availability of the draft genome sequence of Occidental pear (P. communis L.), has provided a good opportunity to characterize the abundance, distribution, timing, and evolution of long terminal repeat retrotransposons (LTR-RTs) in these two important fruit plants. Here, a total of 7247 LTR-RTs, which can be classified into 148 families, have been identified in the assembled Oriental pear genome. Unlike in other plant genomes, approximately 90% of these elements were found to be randomly distributed along the pear chromosomes. Further analysis revealed that the amplification timeframe of elements varies dramatically in different families, super-families and lineages, and the Copia-like elements have highest activity in the recent 0.5 million years (Mys). The data also showed that two genomes evolved with similar evolutionary rates after their split from the common ancestor ~0.77-1.66 million years ago (Mya). Overall, the data provided here will be a valuable resource for further investigating the impact of transposable elements on gene structure, expression, and epigenetic modification in the pear genomes.


Asunto(s)
Pyrus/genética , Retroelementos , Secuencias Repetidas Terminales , Cromosomas de las Plantas , Evolución Molecular , Genoma de Planta , Estudio de Asociación del Genoma Completo , Filogenia , Proteínas de Plantas/genética
7.
Exp Neurol ; 272: 160-9, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25797575

RESUMEN

Sphingosine kinases (Sphks) are the rate-limiting kinases in the generation of sphingosine-1-phosphate, which is a well-established intracellular pro-survival lipid mediator. Sphk2 has been reported to be protective following experimental stroke. We investigated the role of Sphk1 in cerebral ischemia using a mouse middle cerebral artery occlusion (MCAO) model and an in vitro glucose-oxygen deprivation (OGD) model. Sphk expression and activity were assessed in the ischemic brain with quantitative PCR (qPCR), Western blot, immunohistochemistry and enzyme-linked immunosorbent assay (ELISA). Pharmacological and gene knockdown approaches were utilized to investigate the effects of Sphk1 on stroke outcomes. The expression of Sphk1 but not that of Sphk2 was rapidly induced in the cortical penumbra over 96h after MCAO, and the microglia were one of the major cellular sources of Sphk1 induction. Consistently, Sphk activity was enhanced in the cortical penumbra. In contrast to the protective role of Sphk2, pharmacological inhibition and cortical knockdown of Sphk1 reduced infarction at 24 and 96h after reperfusion. Additionally, the Sphk1 inhibitor improved the neurological deficits at 96h after reperfusion. Mechanistically, Sphk1 inhibition and knockdown significantly attenuated MCAO-induced expression of inflammatory mediators in the cortical penumbra. Moreover, using a conditioned medium transfer approach, we demonstrated that OGD-treated neurons induced the expression of Sphk1 and pro-inflammatory mediators in primary microglia, and the microglial induction of pro-inflammatory mediators by ischemic neurons was blunted by Sphk1 inhibition. Taken together, our results indicate that Sphk1 plays an essential role in mediating post-stroke neuroinflammation.


Asunto(s)
Encefalitis/enzimología , Encefalitis/etiología , Regulación Enzimológica de la Expresión Génica/fisiología , Infarto de la Arteria Cerebral Media/complicaciones , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Animales , Animales Recién Nacidos , Encéfalo/citología , Infarto Encefálico/tratamiento farmacológico , Infarto Encefálico/etiología , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Hipoxia de la Célula/efectos de los fármacos , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Encefalitis/tratamiento farmacológico , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Glucosa/deficiencia , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Masculino , Ratones , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Microglía/química , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Fosfopiruvato Hidratasa/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Factores de Tiempo
8.
PLoS One ; 8(7): e68587, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23861922

RESUMEN

Long terminal repeat retrotransposons (LTR-RTs) are the major DNA components in flowering plants. Most LTR-RTs contain dinucleotides 'TG' and 'CA' at the ends of the two LTRs. Here we report the structure, evolution, and propensity of a tomato atypical retrotransposon element (TARE1) with both LTRs starting as 'TA'. This family is also characterized by high copy numbers (354 copies), short LTR size (194 bp), extremely low ratio of solo LTRs to intact elements (0.05∶1), recent insertion (most within 0.75∼1.75 million years, Mys), and enrichment in pericentromeric region. The majority (83%) of the TARE1 elements are shared between S. lycopersicum and its wild relative S. pimpinellifolium, but none of them are found in potato. In the present study, we used shared LTR-RTs as molecular markers and estimated the divergence time between S. lycopersicum and S. pimpinellifolium to be <0.5 Mys. Phylogenetic analysis showed that the TARE1 elements, together with two closely related families, TARE2 and TGRE1, have formed a sub-lineage belonging to a Copia-like Ale lineage. Although TARE1 and TARE2 shared similar structural characteristics, the timing, scale, and activity of their amplification were found to be substantially different. We further propose a model wherein a single mutation from 'G' to 'A' in 3' LTR followed by amplification is responsible for the origin of TARE1, thus providing evidence that the proliferation of a spontaneous mutation can be mediated by the amplification of LTR-RTs at the level of RNA.


Asunto(s)
ADN de Plantas/genética , Genoma de Planta , Filogenia , ARN de Planta/genética , Retroelementos , Solanum lycopersicum/genética , Secuencias Repetidas Terminales , Secuencia de Bases , Cromosomas de las Plantas , ADN de Plantas/clasificación , Evolución Molecular , Variación Genética , Solanum lycopersicum/clasificación , Datos de Secuencia Molecular , Mutagénesis Insercional , Oryza/genética , ARN de Planta/clasificación , Factores de Tiempo
9.
Cell Res ; 20(5): 539-52, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20354503

RESUMEN

Jasmonic acid (JA) is a fatty acid-derived signaling molecule that regulates a broad range of plant defense responses against herbivores and some microbial pathogens. Molecular genetic studies have established that JA also performs a critical role in several aspects of plant development. Here, we describe the characterization of the Arabidopsis mutant jasmonic acid-hypersensitive1-1 (jah1-1), which is defective in several aspects of JA responses. Although the mutant exhibits increased sensitivity to JA in root growth inhibition, it shows decreased expression of JA-inducible defense genes and reduced resistance to the necrotrophic fungus Botrytis cinerea . Gene cloning studies indicate that these defects are caused by a mutation in the cytochrome P450 protein CYP82C2. We provide evidence showing that the compromised resistance of the jah1-1 mutant to B . cinerea is accompanied by decreased expression of JA-induced defense genes and reduced accumulation of JA-induced indole glucosinolates (IGs). Conversely, the enhanced resistance to B. cinerea in CYP82C2-overexpressing plants is accompanied by increased expression of JA-induced defense genes and elevated levels of JA-induced IGs. We demonstrate that CYP82C2 affects JA-induced accumulation of the IG biosynthetic precursor tryptophan (Trp), but not the JA-induced IAA or pathogen-induced camalexin. Together, our results support a hypothesis that CYP82C2 may act in the metabolism of Trp-derived secondary metabolites under conditions in which JA levels are elevated. The jah1-1 mutant should thus be important in future studies toward understanding the mechanisms underlying the complexity of JA-mediated differential responses, which are important for plants to adapt their growth to the ever-changing environments.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/microbiología , Ciclopentanos/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Regulación de la Expresión Génica de las Plantas , Glucosinolatos/metabolismo , Oxilipinas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Botrytis/patogenicidad , Genes de Plantas , Indoles/metabolismo , Mutación , Enfermedades de las Plantas
10.
Plant Cell ; 21(5): 1495-511, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19435934

RESUMEN

Plant roots show an impressive degree of plasticity in adapting their branching patterns to ever-changing growth conditions. An important mechanism underlying this adaptation ability is the interaction between hormonal and developmental signals. Here, we analyze the interaction of jasmonate with auxin to regulate lateral root (LR) formation through characterization of an Arabidopsis thaliana mutant, jasmonate-induced defective lateral root1 (jdl1/asa1-1). We demonstrate that, whereas exogenous jasmonate promotes LR formation in wild-type plants, it represses LR formation in jdl1/asa1-1. JDL1 encodes the auxin biosynthetic gene ANTHRANILATE SYNTHASE alpha1 (ASA1), which is required for jasmonate-induced auxin biosynthesis. Jasmonate elevates local auxin accumulation in the basal meristem of wild-type roots but reduces local auxin accumulation in the basal meristem of mutant roots, suggesting that, in addition to activating ASA1-dependent auxin biosynthesis, jasmonate also affects auxin transport. Indeed, jasmonate modifies the expression of auxin transport genes in an ASA1-dependent manner. We further provide evidence showing that the action mechanism of jasmonate to regulate LR formation through ASA1 differs from that of ethylene. Our results highlight the importance of ASA1 in jasmonate-induced auxin biosynthesis and reveal a role for jasmonate in the attenuation of auxin transport in the root and the fine-tuning of local auxin distribution in the root basal meristem.


Asunto(s)
Acetatos/farmacología , Antranilato Sintasa/farmacología , Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Ciclopentanos/farmacología , Ácidos Indolacéticos/metabolismo , Oxilipinas/farmacología , Acetatos/metabolismo , Antranilato Sintasa/genética , Antranilato Sintasa/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/farmacología , Transporte Biológico/efectos de los fármacos , Ciclopentanos/metabolismo , Etilenos/farmacología , Mutación , Oxilipinas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo
11.
Plant Cell Physiol ; 48(8): 1148-58, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17609218

RESUMEN

The molecular mechanism governing the response of plants to salinity stress, one of the most significant limiting factors for agriculture worldwide, has just started to be revealed. Here, we report AtSZF1 and AtSZF2, two closely related CCCH-type zinc finger proteins, involved in salt stress responses in Arabidopsis. The expression of AtSZF1 and AtSZF2 is quickly and transiently induced by NaCl treatment. Mutants disrupted in the expression of AtSZF1 or AtSZF2 exhibit increased expression of a group of salt stress-responsive genes in response to high salt. Significantly, the atszf1-1/atszf2-1 double mutant displays more sensitive responses to salt stress than the atszf1-1 or atszf2-1 single mutants and wild-type plants. On the other hand, transgenic plants overexpressing AtSZF1 show reduced induction of salt stress-responsive genes and are more tolerant to salt stress. We also showed that AtSZF1 is localized in the nucleus. Taken together, these results demonstrated that AtSZF1 and AtSZF2 negatively regulate the expression of salt-responsive genes and play important roles in modulating the tolerance of Arabidopsis plants to salt stress.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Unión al ADN/metabolismo , Cloruro de Sodio/farmacología , Dedos de Zinc/genética , Adaptación Fisiológica/genética , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiología , Northern Blotting , Proteínas Portadoras/genética , Proteínas Portadoras/fisiología , Núcleo Celular/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular , Datos de Secuencia Molecular , Mutación , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Factores de Tiempo
12.
Plant Mol Biol ; 65(5): 655-65, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17828375

RESUMEN

The phytohormone ABA was known to play a vital role in modulating plant responses to drought stress. Here, we report that a nuclear-localized basic helix-loop-helix (bHLH)-type protein, AtAIB, positively regulates ABA response in Arabidopsis. The expression of AtAIB was transitorily induced by ABA and PEG, although its transcripts were accumulated in various organs. We provided evidence showing that AtAIB has transcriptional activation activity in yeast. Knockdown of AtAIB expression caused reduced sensitivity to ABA, whereas overexpression of this gene led to elevated sensitivity to ABA in cotyledon greening and seedling root growth. Furthermore, soil-grown plants overexpressing AtAIB showed increased drought tolerance. Taken together, these results suggested that AtAIB functions as a transcription activator involved in the regulation of ABA signaling in Arabidopsis.


Asunto(s)
Ácido Abscísico/farmacología , Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Reguladores del Crecimiento de las Plantas/farmacología , Factores de Transcripción/fisiología , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/clasificación , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/clasificación , Núcleo Celular/metabolismo , Secuencias Hélice-Asa-Hélice , Datos de Secuencia Molecular , Filogenia , Plantas Modificadas Genéticamente/metabolismo , ARN Mensajero/metabolismo , Alineación de Secuencia , Análisis de Secuencia de Proteína , Factores de Transcripción/química , Factores de Transcripción/clasificación , Activación Transcripcional
13.
Plant Physiol ; 141(4): 1400-13, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16798948

RESUMEN

Bestatin, a potent inhibitor of some aminopeptidases, was shown previously to be a powerful inducer of wound-response genes in tomato (Lycopersicon esculentum). Here, we present several lines of evidence showing that bestatin specifically activates jasmonic acid (JA) signaling in plants. First, bestatin specifically activates the expression of JA-inducible genes in tomato and Arabidopsis (Arabidopsis thaliana). Second, the induction of JA-responsive genes by bestatin requires the COI1-dependent JA-signaling pathway, but does not depend strictly on JA biosynthesis. Third, microarray analysis using Arabidopsis whole-genome chip demonstrates that the gene expression profile of bestatin-treated plants is similar to that of JA-treated plants. Fourth, bestatin promotes a series of JA-related developmental phenotypes. Taken together, the unique action mode of bestatin in regulating JA-signaled processes leads us to the hypothesis that bestatin exerts its effects through the modulation of some key regulators in JA signaling. We have employed bestatin as an experimental tool to dissect JA signaling through a chemical genetic screening, which yielded a collection of Arabidopsis bestatin-resistant (ber) mutants that are insensitive to the inhibitory effects of bestatin on root elongation. Further characterization efforts demonstrate that some ber mutants are defective in various JA-induced responses, which allowed us to classify the ber mutants into three phenotypic groups: JA-insensitive ber mutants, JA-hypersensitive ber mutants, and mutants insensitive to bestatin but showing normal response to JA. Genetic and phenotypic analyses of the ber mutants with altered JA responses indicate that we have identified several novel loci involved in JA signaling.


Asunto(s)
Aminopeptidasas/antagonistas & inhibidores , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Ciclopentanos/farmacología , Leucina/análogos & derivados , Inhibidores de Proteasas/farmacología , Transducción de Señal/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/clasificación , Proteínas de Arabidopsis/fisiología , Ciclopentanos/química , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Técnicas Genéticas , Leucina/farmacología , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/metabolismo , Oxilipinas , Raíces de Plantas/anatomía & histología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA