Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Plant Physiol ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829837

RESUMEN

Soybean (Glycine max [L.] Merr.) is a valuable oil crop but is also highly susceptible to environmental stress. Thus, developing approaches to enhance soybean stress resistance is vital to soybean yield improvement. In previous studies, transcription factor Alfin has been shown to serve as an epigenetic regulator of plant growth and development. However, no studies on Alfin have yet been reported in soybean. In this study, the endoplasmic reticulum (ER) stress- and reactive oxygen species (ROS)-related GmAlfin09 was identified. Screening of genes co-expressed with GmAlfin09 unexpectedly led to the identification of soybean peroxidase 6 (GmPRDX6). Further analyses revealed that both GmAlfin09 and GmPRDX6 were responsive to ER stress, with GmPRDX6 localizing to the ER under stress. Promoter binding experiments confirmed the ability of GmAlfin09 to bind to the GmPRDX6 promoter directly. When GmAlfin09 and GmPRDX6 were overexpressed in soybean, enhanced ER stress resistance and decreased ROS levels were observed. Together, these findings suggest that GmAlfin09 promotes the upregulation of GmPRDX6, and GmPRDX6 subsequently localizes to the ER, reduces ROS levels, promotes ER homeostasis, and ensures the normal growth of soybean even under ER stress. This study highlights a vital target gene for future molecular breeding of stress-resistant soybean lines.

2.
Plant Biotechnol J ; 22(8): 2333-2347, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38600703

RESUMEN

Sterols have long been associated with diverse fields, such as cancer treatment, drug development, and plant growth; however, their underlying mechanisms and functions remain enigmatic. Here, we unveil a critical role played by a GmNF-YC9-mediated CCAAT-box transcription complex in modulating the steroid metabolism pathway within soybeans. Specifically, this complex directly activates squalene monooxygenase (GmSQE1), which is a rate-limiting enzyme in steroid synthesis. Our findings demonstrate that overexpression of either GmNF-YC9 or GmSQE1 significantly enhances soybean stress tolerance, while the inhibition of SQE weakens this tolerance. Field experiments conducted over two seasons further reveal increased yields per plant in both GmNF-YC9 and GmSQE1 overexpressing plants under drought stress conditions. This enhanced stress tolerance is attributed to the reduction of abiotic stress-induced cell oxidative damage. Transcriptome and metabolome analyses shed light on the upregulation of multiple sterol compounds, including fucosterol and soyasaponin II, in GmNF-YC9 and GmSQE1 overexpressing soybean plants under stress conditions. Intriguingly, the application of soybean steroids, including fucosterol and soyasaponin II, significantly improves drought tolerance in soybean, wheat, foxtail millet, and maize. These findings underscore the pivotal role of soybean steroids in countering oxidative stress in plants and offer a new research strategy for enhancing crop stress tolerance and quality from gene regulation to chemical intervention.


Asunto(s)
Glycine max , Estrés Fisiológico , Glycine max/genética , Glycine max/fisiología , Glycine max/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Plantas Modificadas Genéticamente , Esteroides/metabolismo , Sequías , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
3.
J Exp Bot ; 75(5): 1615-1632, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-37988280

RESUMEN

Heterotrimeric G proteins play key roles in cellular processes. Although phenotypic analyses of Arabidopsis Gß (AGB1) mutants have implicated G proteins in abscisic acid (ABA) signaling, the AGB1-mediated modules involved in ABA responses remain unclear. We found that a partial AGB1 protein was localized to the nucleus where it interacted with ABA-activated VirE2-interacting protein 1 (VIP1) and mitogen-activated protein kinase 3 (MPK3). AGB1 acts as an upstream negative regulator of VIP1 activity by initiating responses to ABA and drought stress, and VIP1 regulates the ABA signaling pathway in an MPK3-dependent manner in Arabidopsis. AGB1 outcompeted VIP1 for interaction with the C-terminus of MPK3, and prevented phosphorylation of VIP1 by MPK3. Importantly, ABA treatment reduced AGB1 expression in the wild type, but increased in vip1 and mpk3 mutants. VIP1 associates with ABA response elements present in the AGB1 promoter, forming a negative feedback regulatory loop. Thus, our study defines a new mechanism for fine-tuning ABA signaling through the interplay between AGB1 and MPK3-VIP1. Furthermore, it suggests a common G protein mechanism to receive and transduce signals from the external environment.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Subunidades beta de la Proteína de Unión al GTP , Ácido Abscísico/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Subunidades beta de la Proteína de Unión al GTP/genética , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Fosforilación
4.
Plant J ; 107(3): 740-759, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33978999

RESUMEN

Drought is a critical abiotic stressor that modulates soybean yield. Drought stress drastically enhances reactive oxygen species (ROS) formation, and maintaining ROS content above a cytostatic level but below a cytotoxic level is essential for normal biology processes in plants. At present, most of the known ROS-scavenging systems are in the cytoplasm, and the mechanism of ROS regulation in the nucleus remains unclear. GmNTF2B-1 is a member of the IV subgroup in the nucleus transporter family. Its expression is localized to the roots and is stimulated by drought stress. In this study, the overexpression of GmNTF2B-1 was found to improve the drought tolerance of transgenic soybean by influencing the ROS content in plants. An oxidoreductase, GmOXR17, was identified to interact with GmNTF2B-1 in the nucleus through the yeast two-hybrid, coimmunoprecipitation and bimolecular fluorescence complementation assays. The drought tolerance of GmOXR17 transgenic soybean was similar to that of GmNTF2B-1. GmNTF2B-1 was expressed in both cytoplasm and nucleus, and GmOXR17 transferred from the cytoplasm to the nucleus under drought stress. The overexpression of GmNTF2B-1 enhanced the nuclear entry of GmOXR17, and the overexpression of GmNTF2B-1 or GmOXR17 could decrease the H2 O2 content and oxidation level in the nucleus. In conclusion, the interaction between GmNTF2B-1 and GmOXR17 may enhance the nuclear entry of GmOXR17, thereby enhancing nuclear ROS scavenging to improve the drought resistance of soybean.


Asunto(s)
Sequías , Glycine max/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Ácido Abscísico/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Transporte de Membrana/genética , Hojas de la Planta , Proteínas de Plantas/genética , Especies Reactivas de Oxígeno , Glycine max/efectos de los fármacos , Estrés Fisiológico , Agua/farmacología
5.
Plant Biotechnol J ; 20(8): 1606-1621, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35514029

RESUMEN

Genetically enhancing drought tolerance and nutrient use efficacy enables sustainable and stable wheat production in drought-prone areas exposed to water shortages and low soil fertility, due to global warming and declining natural resources. In this study, wheat plants, exhibiting improved drought tolerance and N-use efficacy, were developed by introducing GmTDN1, a gene encoding a DREB-like transcription factor, into two modern winter wheat varieties, cv Shi4185 and Jimai22. Overexpressing GmTDN1 in wheat resulted in significantly improved drought and low-N tolerance under drought and N-deficient conditions in the greenhouse. Field trials conducted at three different locations over a period of 2-3 consecutive years showed that both Shi4185 and Jimai22 GmTDN1 transgenic lines were agronomically superior to wild-type plants, and produced significantly higher yields under both drought and N-deficient conditions. No yield penalties were observed in these transgenic lines under normal well irrigation conditions. Overexpressing GmTDN1 enhanced photosynthetic and osmotic adjustment capacity, antioxidant metabolism, and root mass of wheat plants, compared to those of wild-type plants, by orchestrating the expression of a set of drought stress-related genes as well as the nitrate transporter, NRT2.5. Furthermore, transgenic wheat with overexpressed NRT2.5 can improve drought tolerance and nitrogen (N) absorption, suggesting that improving N absorption in GmTDN1 transgenic wheat may contribute to drought tolerance. These findings may lead to the development of new methodologies with the capacity to simultaneously improve drought tolerance and N-use efficacy in cereal crops to ensure sustainable agriculture and global food security.


Asunto(s)
Sequías , Triticum , Regulación de la Expresión Génica de las Plantas , Fotosíntesis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico/genética , Factores de Transcripción/genética , Triticum/genética , Triticum/metabolismo
6.
New Phytol ; 234(4): 1278-1293, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35224735

RESUMEN

Salt tolerance during seed germination is essential for seedling establishment under salt stress. Sirtuin-like proteins, NAD+ -dependent histone deacetylases, are involved in plant responses to abiotic stresses; however, the regulatory mechanism remains unknown. We elucidated the mechanism underlying AtSRT2 (a sirtuin-like protein)-mediated regulation of salt tolerance during seed germination in Arabidopsis. The AtSRT2 mutant srt2 exhibited significantly reduced seed germination percentages under salt stress; its targets were identified via chromatin immunoprecipitation coupled with ultra-high-throughput parallel DNA sequencing (ChIP-Seq) assay. Epistasis analysis was performed to identify AtSRT2-related pathways. Overexpression of SRT2.7, an AtSRT2 splice variant, rescued the salt-sensitive phenotype of mutant srt2. AtSRT2 histone deacetylation activity was important for salt tolerance during seed germination. The acetylation level of histone H4K8 locus in srt2-1 increased significantly under salt treatment. Vesicle-associated membrane protein 714 (VAMP714), a negative regulator of hydrogen peroxide (H2 O2 )-containing vesicle trafficking in cells, was identified as a target of AtSRT2. AtSRT2 regulated histone acetylation in the promoter region of VAMP714 and inhibited VAMP714 transcription under salt treatment. Seed germination percentage of double-mutant srt2-1vamp714 was close to that of single-mutant vamp714, and higher than that of single-mutant srt2 under salt stress. Hydrogen peroxide content and DNA damage increased after salt treatment in srt2 during seed germination. AtSRT2 regulates salt tolerance during seed germination through VAMP714 in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Sirtuinas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Germinación , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Peróxido de Hidrógeno/metabolismo , Proteínas R-SNARE/genética , Tolerancia a la Sal/genética , Semillas/metabolismo , Sirtuinas/genética , Sirtuinas/metabolismo , Estrés Fisiológico/genética
7.
New Phytol ; 236(1): 114-131, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35719110

RESUMEN

Abscisic acid (ABA) receptors are considered as the targeted manipulation of ABA sensitivity and water productivity in plants. Regulation of their stability or activity will directly affect ABA signalling. Mitogen-activated protein kinase (MAPK) cascades link multiple environmental and plant developmental cues. However, the molecular mechanism of ABA signalling and MAPK cascade interaction remains largely elusive. TaMPK3 overexpression decreases drought tolerance and wheat sensitivity to ABA, significantly weakening ABA's inhibitory effects on growth. Under drought stress, overexpression lines show lower survival rates, shoot fresh weight and proline content, but higher malondialdehyde levels at seedling stage, as well as decreased grain width and 1000 grain weight in both glasshouse and field conditions at the adult stage. TaMPK3-RNAi increases drought tolerance. TaMPK3 interaction with TaPYL4 leads to decreased TaPYL4 levels by promoting its ubiquitin-mediated degradation, whereas ABA treatment diminishes TaMPK3-TaPYL interactions. In addition, the expression of ABA signalling proteins is impaired in TaMPK3-overexpressing wheat plants under ABA treatment. The MPK3-PYL interaction module was found to be conserved across monocots and dicots. Our results suggest that the MPK3-PYL module could serve as a negative regulatory mechanism for balancing appropriate drought stress response with normal plant growth signalling in wheat.


Asunto(s)
Ácido Abscísico , Proteínas Quinasas Activadas por Mitógenos , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Proteínas Portadoras/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Plantones/fisiología , Estrés Fisiológico
8.
Plant Physiol ; 187(4): 2749-2762, 2021 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-34618056

RESUMEN

The brassinosteroid pathway promotes a variety of physiological processes in plants and the brassinosteroid insensitive1-ethylmethane sulfonate suppressor (BES)/brassinazole-resistant (BZR) functions as one of its key regulators. We previously showed that the BES/BZR-type transcription factor TaBZR2 mediates the drought stress response in wheat (Triticum aestivum) by directly upregulating the transcriptional activity of glutathione S-transferase 1. However, the function of TaBZR2 in plants under biotic stresses is unknown. In this study, we found that transcript levels of TaBZR2 were upregulated in response to inoculation with wheat stripe rust fungus (Puccinia striiformis f. sp. tritici, Pst) and treatment with flg22 or an elicitor-like protein of Pst, Pst322. Wheat lines overexpressing TaBZR2 conferred increased resistance, whereas TaBZR2-RNAi lines exhibited decreased resistance to multiple races of Pst. TaBZR2 targeted the promoter of the chitinase gene TaCht20.2, activating its transcription. Knockdown of TaCht20.2 in wheat resulted in enhanced susceptibility to Pst, indicating the positive role of TaCht20.2 in wheat resistance. Upon Pst infection in vivo, the overexpression of TaBZR2 increased total chitinase activity, whereas RNAi-mediated silencing of TaBZR2 reduced total chitinase activity. Taken together, our results suggest that TaBZR2 confers broad-spectrum resistance to the stripe rust fungus by increasing total chitinase activity in wheat.


Asunto(s)
Basidiomycota/fisiología , Proteínas Fúngicas/efectos adversos , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Triticum/genética , Quitinasas/efectos adversos , Proteínas de Plantas/metabolismo , Factores de Transcripción/efectos adversos , Triticum/metabolismo
9.
Theor Appl Genet ; 135(12): 4289-4302, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36136127

RESUMEN

KEY MESSAGE: GWAS identified 347 QTLs associated with eight traits related to nitrogen use efficiency in a 389-count wheat panel. Four novel candidate transcription factor genes were verified using qRT-PCR. Nitrogen is an essential nutrient for plants that determines crop yield. Improving nitrogen use efficiency (NUE) should considerably increase wheat yield and reduce the use of nitrogen fertilisers. However, knowledge on the genetic basis of NUE during wheat maturity is limited. In this study, a diversity panel incorporating 389 wheat accessions was phenotyped for eight NUE-related agronomic traits across five different environments. A total of 347 quantitative trait loci (QTLs) for low nitrogen tolerance indices (ratio of agronomic characters under low and high nitrogen conditions) were identified through a genome-wide association study utilising 397,384 single nucleotide polymorphisms (SNPs) within the MLM (Q + K) model, including 11 stable QTLs. Furthermore, 69 candidate genes were predicted for low nitrogen tolerance indices of best linear unbiased predictions values of the eight studied agronomic traits, and four novel candidate transcription factors (TraesCS5A02G237500 for qFsnR5A.2, TraesCS5B02G384500 and TraesCS5B02G384600 for qSLR5B.1, and TraesCS3B02G068800 for qTKWR3B.1) showed differing expression patterns in contrasting low-nitrogen-tolerant wheat genotypes. Moreover, the number of favourable marker alleles calculated using NUE that were significantly related to SNP in accessions decreased over the decades, indicating a decline in the NUE of the 389 wheat varieties. These findings denote promising NUE markers that could be useful in breeding high-NUE wheat varieties, and the candidate genes could further detail the NUE-related regulation network in wheat.


Asunto(s)
Estudio de Asociación del Genoma Completo , Triticum , Triticum/genética , Triticum/metabolismo , Nitrógeno/metabolismo , Fitomejoramiento , Sitios de Carácter Cuantitativo , Fenotipo , Polimorfismo de Nucleótido Simple
10.
Int J Mol Sci ; 23(2)2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35054940

RESUMEN

Salt stress is a major threat to crop quality and yield. Most experiments on salt stress-related genes have been conducted at the laboratory or greenhouse scale. Consequently, there is a lack of research demonstrating the merit of exploring these genes in field crops. Here, we found that the R2R3-MYB transcription factor SiMYB19 from foxtail millet is expressed mainly in the roots and is induced by various abiotic stressors such as salt, drought, low nitrogen, and abscisic acid. SiMYB19 is tentatively localized to the nucleus and activates transcription. It enhances salt tolerance in transgenic rice at the germination and seedling stages. SiMYB19 overexpression increased shoot height, grain yield, and salt tolerance in field- and salt pond-grown transgenic rice. SiMYB19 overexpression promotes abscisic acid (ABA) accumulation in transgenic rice and upregulates the ABA synthesis gene OsNCED3 and the ABA signal transduction pathway-related genes OsPK1 and OsABF2. Thus, SiMYB19 improves salt tolerance in transgenic rice by regulating ABA synthesis and signal transduction. Using rice heterologous expression analysis, the present study introduced a novel candidate gene for improving salt tolerance and increasing yield in crops grown in saline-alkali soil.


Asunto(s)
Oryza/genética , Oryza/metabolismo , Oryza/microbiología , Plantas Modificadas Genéticamente , Tolerancia a la Sal/genética , Setaria (Planta)/genética , Factores de Transcripción/genética , Sequías , Regulación de la Expresión Génica de las Plantas , Oryza/clasificación , Fenotipo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Salino , Plantones/genética , Plantones/crecimiento & desarrollo
11.
Plant Biotechnol J ; 19(12): 2589-2605, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34416065

RESUMEN

Drought and salt stresses impose major constraints on soybean production worldwide. However, improving agronomically valuable soybean traits under drought conditions can be challenging due to trait complexity and multiple factors that influence yield. Here, we identified a nuclear factor Y C subunit (NF-YC) family transcription factor member, GmNF-YC14, which formed a heterotrimer with GmNF-YA16 and GmNF-YB2 to activate the GmPYR1-mediated abscisic acid (ABA) signalling pathway to regulate stress tolerance in soybean. Notably, we found that CRISPR/Cas9-generated GmNF-YC14 knockout mutants were more sensitive to drought than wild-type soybean plants. Furthermore, field trials showed that overexpression of GmNF-YC14 or GmPYR1 could increase yield per plant, grain plumpness, and stem base circumference, thus indicating improved adaptation of soybean plants to drought conditions. Taken together, our findings expand the known functional scope of the NF-Y transcription factor functions and raise important questions about the integration of ABA signalling pathways in plants. Moreover, GmNF-YC14 and GmPYR1 have potential for application in the improvement of drought tolerance in soybean plants.


Asunto(s)
Ácido Abscísico , Regulación de la Expresión Génica de las Plantas , Ácido Abscísico/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Transducción de Señal/genética , Glycine max/metabolismo , Estrés Fisiológico/genética
12.
Int J Mol Sci ; 22(22)2021 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-34830160

RESUMEN

Nitrogen plays a crucial role in wheat growth and development. Here, we analyzed the tolerance of wheat strains XM26 and LM23 to low-nitrogen stress using a chlorate sensitivity experiment. Subsequently, we performed transcriptome analyses of both varieties exposed to low-nitrogen (LN) and normal (CK) treatments. Compared with those under CK treatment, 3534 differentially expressed genes (DEGs) were detected in XM26 in roots and shoots under LN treatment (p < 0.05, and |log2FC| > 1). A total of 3584 DEGs were detected in LM23. A total of 3306 DEGs, including 863 DEGs in roots and 2443 DEGs in shoots, were specifically expressed in XM26 or showed huge differences between XM26 and LM23 (log2FC ratio > 3). These were selected for gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. The calcium-mediated plant-pathogen interaction, MAPK signaling, and phosphatidylinositol signaling pathways were enriched in XM26 but not in LM23. We also verified the expression of important genes involved in these pathways in the two varieties using qRT-PCR. A total of 156 transcription factors were identified among the DEGs, and their expression patterns were different between the two varieties. Our findings suggest that calcium-related pathways play different roles in the two varieties, eliciting different tolerances to low-nitrogen stress.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Nitrógeno , Raíces de Plantas , Estrés Fisiológico/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Triticum , Perfilación de la Expresión Génica , Nitrógeno/metabolismo , Nitrógeno/farmacología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Especificidad de la Especie , Triticum/genética , Triticum/metabolismo
13.
Int J Mol Sci ; 22(15)2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-34361039

RESUMEN

Plant G proteins are versatile components of transmembrane signaling transduction pathways. The deficient mutant of heterotrimeric G protein leads to defects in plant growth and development, suggesting that it regulates the GA pathway in Arabidopsis. However, the molecular mechanism of G protein regulation of the GA pathway is not understood in plants. In this study, two G protein ß subunit (AGB1) mutants, agb1-2 and N692967, were dwarfed after exogenous application of GA3. AGB1 interacts with the DNA-binding domain MYB62, a GA pathway suppressor. Transgenic plants were obtained through overexpression of MYB62 in two backgrounds including the wild-type (MYB62/WT Col-0) and agb1 mutants (MYB62/agb1) in Arabidopsis. Genetic analysis showed that under GA3 treatment, the height of the transgenic plants MYB62/WT and MYB62/agb1 was lower than that of WT. The height of MYB62/agb1 plants was closer to MYB62/WT plants and higher than that of mutants agb1-2 and N692967, suggesting that MYB62 is downstream of AGB1 in the GA pathway. qRT-PCR and competitive DNA binding assays indicated that MYB62 can bind MYB elements in the promoter of GA2ox7, a GA degradation gene, to activate GA2ox7 transcription. AGB1 affected binding of MYB62 on the promoter of GA2ox7, thereby negatively regulating th eactivity of MYB62.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Giberelinas/metabolismo , Arabidopsis , Proteínas de Arabidopsis/genética , Sitios de Unión , Subunidades beta de la Proteína de Unión al GTP/genética , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Regiones Promotoras Genéticas , Unión Proteica
14.
Int J Mol Sci ; 22(24)2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34948302

RESUMEN

Calmodulin-binding protein 60 (CBP60) members constitute a plant-specific protein family that plays an important role in plant growth and development. In the soybean genome, nineteen CBP60 members were identified and analyzed for their corresponding sequences and structures to explore their functions. Among GmCBP60A-1, which primarily locates in the cytomembrane, was significantly induced by drought and salt stresses. The overexpression of GmCBP60A-1 enhanced drought and salt tolerance in Arabidopsis, which showed better state in the germination of seeds and the root growth of seedlings. In the soybean hairy roots experiment, the overexpression of GmCBP60A-1 increased proline content, lowered water loss rate and malondialdehyde (MDA) content, all of which likely enhanced the drought and salt tolerance of soybean seedlings. Under stress conditions, drought and salt response-related genes showed significant differences in expression in hairy root soybean plants of GmCBP60A-1-overexpressing and hairy root soybean plants of RNAi. The present study identified GmCBP60A-1 as an important gene in response to salt and drought stresses based on the functional analysis of this gene and its potential underlying mechanisms in soybean stress-tolerance.


Asunto(s)
Proteínas de Unión a Calmodulina/genética , Glycine max/genética , Proteínas de Plantas/genética , Estrés Salino/genética , Arabidopsis/genética , Sequías , Regulación de la Expresión Génica de las Plantas/genética , Estudio de Asociación del Genoma Completo/métodos , Plantas Modificadas Genéticamente/genética , Tolerancia a la Sal/genética , Plantones/genética , Semillas/genética , Proteínas de Soja/genética , Estrés Fisiológico/genética
15.
BMC Plant Biol ; 20(1): 123, 2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-32192425

RESUMEN

BACKGROUND: Crop productivity is challenged by abiotic stresses, among which drought stress is the most common. NF-Y genes, especially NF-YA genes, regulate tolerance to abiotic stress. RESULTS: Soybean NF-Y gene GmNFYA5 was identified to have the highest transcript level among all 21 NF-YA genes in soybean (Glycine max L.) under drought stress. Drought-induced transcript of GmNFYA5 was suppressed by the ABA synthesis inhibitor naproxen (NAP). GmNFYA5 transcript was detected in various tissues at vegetative and reproductive growth stages with higher levels in roots and leaves than in other tissues, which was consist with the GmNFYA5 promoter: GUS fusion assay. Overexpression of GmNFYA5 in transgenic Arabidopsis plants caused enhanced drought tolerance in seedlings by decreasing stomatal aperture and water loss from leaves. Overexpression and suppression of GmNFYA5 in soybean resulted in increased and decreased drought tolerance, respectively, relative to plants with an empty vector (EV). Transcript levels of ABA-dependent genes (ABI2, ABI3, NCED3, LEA3, RD29A, P5CS1, GmWRKY46, GmNCED2 and GmbZIP1) and ABA-independent genes (DREB1A, DREB2A, DREB2B, GmDREB1, GmDREB2 and GmDREB3) in transgenic plants overexpressing GmNFYA5 were higher than those of wild-type plants under drought stress; suppression of GmNFYA5 transcript produced opposite results. GmNFYA5 probably regulated the transcript abundance of GmDREB2 and GmbZIP1 by binding to the promoters in vivo. CONCLUSIONS: Our results suggested that overexpression of GmNFYA5 improved drought tolerance in soybean via both ABA-dependent and ABA-independent pathways.


Asunto(s)
Arabidopsis/fisiología , Factor de Unión a CCAAT/genética , Sequías , Regulación de la Expresión Génica de las Plantas/fisiología , Glycine max/fisiología , Proteínas de Plantas/genética , Arabidopsis/genética , Factor de Unión a CCAAT/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/fisiología , Glycine max/genética
16.
Plant Physiol ; 180(1): 605-620, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30842265

RESUMEN

BRI1-EMS suppressor (BES)/brassinazole-resistant (BZR) family transcription factors are involved in a variety of physiological processes, but the biological functions of some BES/BZR transcription factors remain unknown; moreover, it is not clear if any of these proteins function in the regulation of plant stress responses. Here, wheat (Triticum aestivum) brassinazole-resistant 2 (TaBZR2)-overexpressing plants exhibited drought tolerant phenotypes, whereas downregulation of TaBZR2 in wheat by RNA interference resulted in elevated drought sensitivity. electrophoretic mobility shift assay and luciferase reporter analysis illustrate that TaBZR2 directly interacts with the gene promoter to activate the expression of T. aestivum glutathione s-transferase-1 (TaGST1), which functions positively in scavenging drought-induced superoxide anions (O2 -). Moreover, TaBZR2 acts as a positive regulator in brassinosteroid (BR) signaling. Exogenous BR treatment enhanced TaBZR2-mediated O2 - scavenging and antioxidant enzyme gene expression. Taken together, we demonstrate that a BES/BZR family transcription factor, TaBZR2, functions positively in drought responses by activating TaGST1 and mediates the crosstalk between BR and drought signaling pathways. Our results thus provide new insights into the mechanisms underlying how BES/BZR family transcription factors contribute to drought tolerance in wheat.


Asunto(s)
Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Triticum/fisiología , Brasinoesteroides/metabolismo , Brasinoesteroides/farmacología , Núcleo Celular/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Interferencia de ARN , Estrés Fisiológico/genética , Superóxidos/metabolismo , Factores de Transcripción/genética , Triticum/efectos de los fármacos
17.
J Exp Bot ; 71(6): 1842-1857, 2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-31875914

RESUMEN

Drought-response-element binding (DREB)-like transcription factors can significantly enhance plant tolerance to water stress. However, most research on DREB-like proteins to date has been conducted in growth chambers or greenhouses, so there is very little evidence available to support their practical use in the field. In this study, we overexpressed GmDREB1 from soybean in two popular wheat varieties and conducted drought-tolerance experiments across a range of years, sites, and drought-stress regimes. We found that the transgenic plants consistently exhibited significant improvements in yield performance and a variety of physiological traits compared with wild-type plants when grown under limited water conditions in the field, for example showing grain yield increases between 4.79-18.43%. Specifically, we found that the transgenic plants had reduced membrane damage and enhanced osmotic adjustment and photosynthetic efficiency compared to the non-transgenic controls. Three enzymes from the biosynthetic pathway of the phytohormone melatonin were up-regulated in the transgenic plants, and external application of melatonin was found to improve drought tolerance. Together, our results demonstrate the utility of transgenic overexpression of GmDREB1 to improve the drought tolerance of wheat in the field.


Asunto(s)
Sequías , Triticum , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Glycine max/genética , Glycine max/metabolismo , Estrés Fisiológico , Triticum/genética , Triticum/metabolismo
18.
Int J Mol Sci ; 21(6)2020 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-32245276

RESUMEN

Vascular plant one-zinc-finger (VOZ) transcription factor, a plant specific one-zinc-finger-type transcriptional activator, is involved in regulating numerous biological processes such as floral induction and development, defense against pathogens, and response to multiple types of abiotic stress. Six VOZ transcription factor-encoding genes (GmVOZs) have been reported to exist in the soybean (Glycine max) genome. In spite of this, little information is currently available regarding GmVOZs. In this study, GmVOZs were cloned and characterized. GmVOZ genes encode proteins possessing transcriptional activation activity in yeast cells. GmVOZ1E, GmVOZ2B, and GmVOZ2D gene products were widely dispersed in the cytosol, while GmVOZ1G was primarily located in the nucleus. GmVOZs displayed a differential expression profile under dehydration, salt, and salicylic acid (SA) stress conditions. Among them, GmVOZ1G showed a significantly induced expression in response to all stress treatments. Overexpression of GmVOZ1G in soybean hairy roots resulted in a greater tolerance to drought and salt stress. In contrast, RNA interference (RNAi) soybean hairy roots suppressing GmVOZ1G were more sensitive to both of these stresses. Under drought treatment, soybean composite plants with an overexpression of hairy roots had higher relative water content (RWC). In response to drought and salt stress, lower malondialdehyde (MDA) accumulation and higher peroxidase (POD) and superoxide dismutase (SOD) activities were observed in soybean composite seedlings with an overexpression of hairy roots. The opposite results for each physiological parameter were obtained in RNAi lines. In conclusion, GmVOZ1G positively regulates drought and salt stress tolerance in soybean hairy roots. Our results will be valuable for the functional characterization of soybean VOZ transcription factors under abiotic stress.


Asunto(s)
Deshidratación/metabolismo , Glycine max/metabolismo , Proteínas de Plantas/metabolismo , Tolerancia a la Sal/genética , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Citosol/metabolismo , Deshidratación/genética , Sequías , Regulación de la Expresión Génica de las Plantas/genética , Malondialdehído/metabolismo , Peroxidasa/genética , Peroxidasa/metabolismo , Filogenia , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Elementos Reguladores de la Transcripción/genética , Estrés Salino/genética , Plantones/genética , Plantones/metabolismo , Glycine max/genética , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Factores de Transcripción/genética
19.
Int J Mol Sci ; 21(2)2020 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-31968543

RESUMEN

Abiotic stresses, such as drought and salt, are major environmental stresses, affecting plant growth and crop productivity. Plant bZIP transcription factors (bZIPs) confer stress resistances in harsh environments and play important roles in each phase of plant growth processes. In this research, 15 soybean bZIP family members were identified from drought-induced de novo transcriptomic sequences of soybean, which were unevenly distributed across 12 soybean chromosomes. Promoter analysis showed that these 15 genes were rich in ABRE, MYB and MYC cis-acting elements which were reported to be involved in abiotic stress responses. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated that 15 GmbZIP genes could be induced by drought and salt stress. GmbZIP2 was significantly upregulated under stress conditions and thus was selected for further study. Subcellular localization analysis revealed that the GmbZIP2 protein was located in the cell nucleus. qRT-PCR results show that GmbZIP2 can be induced by multiple stresses. The overexpression of GmbZIP2 in Arabidopsis and soybean hairy roots could improve plant resistance to drought and salt stresses. The result of differential expression gene analysis shows that the overexpression of GmbZIP2 in soybean hairy roots could enhance the expression of the stress responsive genes GmMYB48, GmWD40, GmDHN15, GmGST1 and GmLEA. These results indicate that soybean bZIPs played pivotal roles in plant resistance to abiotic stresses.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Regulación de la Expresión Génica de las Plantas , Glycine max/genética , Arabidopsis/genética , Arabidopsis/fisiología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Sequías , Fenotipo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Estrés Salino , Glycine max/fisiología , Estrés Fisiológico
20.
BMC Genomics ; 20(1): 136, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30767761

RESUMEN

BACKGROUND: Potassium (K) is essential to plant growth and development. Foxtail millet (Setaria italic L.) is an important fodder grain crop in arid and semi-arid regions of Asia and Africa because of its strong tolerance to drought and barren stresses. The molecular mechanisms of physiological and biochemical responses and regulations to various abiotic stresses such as low potassium conditions in foxtail millet are not fully understood, which hinders the research and exploitation of this valuable resource. RESULTS: In this research, we demonstrated that the millet variety Longgu 25 was the most insensitive variety to low potassium stress among other five varieties. The transcriptome analysis of Longgu 25 variety revealed a total of 26,192 and 26,849 genes from the K+-deficient and normal transcriptomic libraries by RNA-seq, respectively. A total of 1982 differentially expressed genes (DEGs) were identified including 866 up-regulated genes and 1116 down-regulated genes. We conducted a comparative analysis of these DEGs under low-K+ stress conditions and discovered 248 common DEGs for potassium deprivation among foxtail millet, rice and Arabidopsis. Further Gene Ontology (GO) enrichment analysis identified a series of candidate genes that may involve in K+-deficient response and in intersection of molecular functions among foxtail millet, rice and Arabidopsis. The expression profiles of randomly selected 18 candidate genes were confirmed as true DEGs with RT-qPCR. Furthermore, one of the 18 DEGs, SiMYB3, is specifically expressed only in the millet under low-K+ stress conditions. Overexpression of SiMYB3 promoted the main root elongation and improved K+ deficiency tolerance in transgenic Arabidopsis plants. The fresh weight of the transgenic plants was higher, the primary root length was longer and the root surface-area was larger than those of control plants after K+ deficiency treatments. CONCLUSIONS: This study provides a global view of transcriptomic resources relevant to the K+-deficient tolerance in foxtail millet, and shows that SiMYB3 is a valuable genetic resource for the improvement of K+ deficiency tolerance in foxtail millet.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Proteínas de Plantas/fisiología , Potasio/metabolismo , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Estrés Fisiológico/genética , Factores de Transcripción/fisiología , Arabidopsis/genética , Bases de Datos Genéticas , Perfilación de la Expresión Génica , Variación Genética , Ensayos Analíticos de Alto Rendimiento , Oryza/genética , Fenotipo , Proteínas de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente/genética , Plantones/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA