Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(11)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38894342

RESUMEN

Hydropower units are the core equipment of hydropower stations, and research on the fault prediction and health management of these units can help improve their safety, stability, and the level of reliable operation and can effectively reduce costs. Therefore, it is necessary to predict the swing trend of these units. Firstly, this study considers the influence of various factors, such as electrical, mechanical, and hydraulic swing factors, on the swing signal of the main guide bearing y-axis. Before swing trend prediction, the multi-index feature selection algorithm is used to obtain suitable state variables, and the low-dimensional effective feature subset is obtained using the Pearson correlation coefficient and distance correlation coefficient algorithms. Secondly, the dilated convolution graph neural network (DCGNN) algorithm, with a dilated convolution graph, is used to predict the swing trend of the main guide bearing. Existing GNN methods rely heavily on predefined graph structures for prediction. The DCGNN algorithm can solve the problem of spatial dependence between variables without defining the graph structure and provides the adjacency matrix of the graph learning layer simulation, avoiding the over-smoothing problem often seen in graph convolutional networks; furthermore, it effectively improves the prediction accuracy. The experimental results showed that, compared with the RNN-GRU, LSTNet, and TAP-LSTM algorithms, the MAEs of the DCGNN algorithm decreased by 6.05%, 6.32%, and 3.04%; the RMSEs decreased by 9.21%, 9.01%, and 2.83%; and the CORR values increased by 0.63%, 1.05%, and 0.37%, respectively. Thus, the prediction accuracy was effectively improved.

2.
Entropy (Basel) ; 21(3)2019 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33266953

RESUMEN

Self-adaptive methods are recognized as important tools in signal process and analysis. A signal can be decomposed into a serious of new components with these mentioned methods, thus the amount of information is also increased. In order to use these components effectively, a feature set is used to describe them. With the development of pattern recognition, the analysis of self-adaptive components is becoming more intelligent and depend on feature sets. Thus, a new feature is proposed to express the signal based on the hidden property between extreme values. In this investigation, the components are first simplified through a symbolization method. The entropy analysis is incorporated into the establishment of the characteristics to describe those self-adaptive decomposition components according to the relationship between extreme values. Subsequently, Extreme Interval Entropy is proposed and used to realize the pattern recognition, with two typical self-adaptive methods, based on both Empirical Mode Decomposition (EMD) and Empirical Wavelet Transform (EWT). Later, extreme interval entropy is applied in two fault diagnosis experiments. One experiment is the fault diagnosis for rolling bearings with both different faults and damage degrees, the other experiment is about rolling bearing in a printing press. The effectiveness of the proposed method is evaluated in both experiments with K-means cluster. The accuracy rate of the fault diagnosis in rolling bearing is in the range of 75% through 100% using EMD, 95% through 100% using EWT. In the printing press experiment, the proposed method can reach 100% using EWT to distinguish the normal bearing (but cannot distinguish normal samples at different speeds), with fault bearing in 4 r/s and in 8 r/s. The fault samples are identified only according to a single proposed feature with EMD and EWT. Therefore, the extreme interval entropy is proved to be a reliable and effective tool for fault diagnosis and other similar applications.

3.
BMC Genomics ; 16: 717, 2015 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-26391348

RESUMEN

BACKGROUND: Strains of extraintestinal pathogenic Escherichia coli (ExPEC) can invade and colonize extraintestinal sites and cause a wide range of infections. Genomic analysis of ExPEC has mainly focused on isolates of human and avian origins, with porcine ExPEC isolates yet to be sequenced. To better understand the genomic attributes underlying the pathogenicity of porcine ExPEC, we isolated two E. coli strains PCN033 and PCN061 from pigs, assessed their in vivo virulence, and completed and compared their genomes. RESULTS: Animal experiments demonstrated that strain PCN033, but not PCN061, was pathogenic in a pig model. The chromosome of PCN033 was 384 kb larger than that of PCN061. Among the PCN033-specific sequences, genes encoding adhesins, unique lipopolysaccharide, unique capsular polysaccharide, iron acquisition and transport systems, and metabolism were identified. Additionally, a large plasmid PCN033p3 harboring many typical ExPEC virulence factors was identified in PCN033. Based on the genetic variation between PCN033 and PCN061, corresponding phenotypic differences in flagellum-dependent swarming motility and metabolism were verified. Furthermore, the comparative genomic analyses showed that the PCN033 genome shared many similarities with genomic sequences of human ExPEC strains. Additionally, comparison of PCN033 genome with other nine characteristic E. coli genomes revealed 425 PCN033-special coding sequences. Genes of this subset included those encoding type I restriction-modification (R-M) system, type VI secretion system (T6SS) and membrane-associated proteins. CONCLUSIONS: The genetic and phenotypic differences between PCN033 and PCN061 could partially explain their differences in virulence, and also provide insight towards the molecular mechanisms of porcine ExPEC infections. Additionally, the similarities between the genomes of PCN033 and human ExPEC strains suggest that some connections between porcine and human ExPEC strains exist. The first completed genomic sequence for porcine ExPEC and the genomic differences identified by comparative analyses provide a baseline understanding of porcine ExPEC genetics and lay the foundation for their further study.


Asunto(s)
Infecciones por Escherichia coli/veterinaria , Escherichia coli/genética , Escherichia coli/patogenicidad , Genoma Bacteriano , Genómica , Enfermedades de los Porcinos/microbiología , Animales , Sistemas de Secreción Bacterianos , Elementos Transponibles de ADN , Escherichia coli/clasificación , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Orden Génico , Genómica/métodos , Lipopolisacáridos/biosíntesis , Redes y Vías Metabólicas , Datos de Secuencia Molecular , Filogenia , Porcinos , Enfermedades de los Porcinos/mortalidad , Virulencia/genética , Factores de Virulencia/genética
4.
Math Biosci Eng ; 20(8): 14117-14135, 2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37679128

RESUMEN

Due to the coupling effect of external environmental noise and vibration noise, the feature rate of the original hydroelectric unit fault signal is not prominent, which will affect the performance of fault diagnosis algorithms. To solve the above problems, this paper proposes a PSO-MCKD-MFFResnet algorithm for fault diagnosis of hydropower units (Particle swarm optimization, PSO; Maximum correlation kurtosis deconvolution, MCKD; Multi-scale feature fusion residual network, MFFResnet). In practical applications, the selection of key parameters in the traditional MCKD method is heavily dependent on prior knowledge. First, this paper proposes a PSO-MCKD enhancement algorithm for fault features, which uses the PSO algorithm to search for the influencing parameters of MCKD to enhance the features from the original fault signal. Second, a fault feature diagnosis algorithm based on MFFResnet is proposed to improve the utilization of local features. The multi-scale residual module is used to extract features at different scales and then put the enhanced signal into MFFResnet for training and classification. The experimental results show that our approach can accurately and effectively classify the fault types of hydropower units, with an accuracy rate of 98.85. It is superior to other representative algorithms in different indicators and has a good stability.

6.
Arch Microbiol ; 194(3): 167-76, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21847536

RESUMEN

Actinobacillus pleuropneumoniae, one of the most important porcine respiratory pathogens, exhibits tight adherence to cell surfaces. The Flp pilus, which is assembled by the proteins encoded by the flp (fimbrial low-molecular-weight protein) operon, may play an important role in the bacterial adherence. In this study, the flp operons of twelve A. pleuropneumoniae serotype reference strains were sequenced and analyzed. The phenotypic diversity of fimbriae was observed using transmission electron microscopy, and the adherence ability was tested against a porcine lung epithelial cell line. The complete flp operon was identified in the reference strains of serotypes 1, 4, 5, 7, 12, and 13, consisting of 14 genes (flp1-flp2-tadV-rcpCAB-tadZABCDEFG). Fimbriae were observed protruding from the bacterial cell surfaces of these strains. In contrast, the flp promoter was absent in serotypes 2, 3, 6, 9, and 11, and the flp1 gene was truncated in serotypes 10 and 15. No pilus was observed on the surfaces of these strains. The piliated strains have higher efficiency of adhesion than the pilus-negative strains. Our data demonstrated that the Flp pili are involved in A. pleuropneumoniae adherence. The genetic diversity of the flp operons among different strains may contribute, at least in part, to the variation in virulence of Actinobacillus pleuropneumoniae.


Asunto(s)
Actinobacillus pleuropneumoniae/genética , Adhesión Bacteriana , Proteínas Fimbrias/genética , Operón , Actinobacillus pleuropneumoniae/patogenicidad , Actinobacillus pleuropneumoniae/ultraestructura , Secuencia de Aminoácidos , Animales , Línea Celular , ADN Bacteriano/genética , Células Epiteliales/microbiología , Fimbrias Bacterianas/fisiología , Variación Genética , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Análisis de Secuencia de ADN , Porcinos , Virulencia
7.
BMC Vet Res ; 8: 140, 2012 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-22909380

RESUMEN

BACKGROUND: Extraintestinal pathogenic Escherichia coli (ExPEC) can cause a variety of infections outside the gastrointestinal tract in humans and animals. Infections due to swine ExPECs have been occurring with increasing frequency in China. These ExPECs may now be considered a new food-borne pathogen that causes cross-infections between humans and pigs. Knowledge of the clonal structure and virulence genes is needed as a framework to improve the understanding of phylogenetic traits of porcine ExPECs. RESULTS: Multilocus sequence typing (MLST) data showed that the isolates investigated in this study could be placed into four main clonal complexes, designated as CC10, CC1687, CC88 and CC58. Strains within CC10 were classified as phylogroup A, and these accounted for most of our porcine ExPEC isolates. Isolates in the CC1687 clonal complex, formed by new sequence types (STs), was classified as phylogroup D, with CC88 isolates considered as B2 and CC58 isolates as B1. Porcine ExPECs in these four clonal complexes demonstrated significantly different virulence gene patterns. A few porcine ExPECs were indentified in phylogroup B2, the phylogroup in which human ExPECs mainly exist. However some STs in the four clonal groups of porcine ExPECs were reported to cause extraintestinal infections in human, based on data in the MLST database. CONCLUSION: Porcine ExPECs have different virulence gene patterns for different clonal complexes. However, these strains are mostly fell in phylogenentic phylogroup A, B1 and D, which is different from human ExPECs that concentrate in phylogroup B2. Our findings provide a better understanding relating to the clonal structure of ExPECs in diseased pigs and indicate a need to re-evaluate their contribution to human ExPEC diseases.


Asunto(s)
Infecciones por Escherichia coli/veterinaria , Escherichia coli/genética , Escherichia coli/patogenicidad , Enfermedades de los Porcinos/microbiología , Animales , China/epidemiología , Escherichia coli/clasificación , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/microbiología , Tipificación de Secuencias Multilocus , Filogenia , Porcinos , Enfermedades de los Porcinos/epidemiología , Virulencia
8.
Materials (Basel) ; 15(24)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36556552

RESUMEN

Fused deposition modeling (FDM) technique is one of the most popular additive manufacturing techniques. Infill density is a critical factor influencing the mechanical properties of 3D-printed components using the FDM technique. For irregular components with variable cross-sections, to increase their overall mechanical properties while maintaining a lightweight, it is necessary to enhance the local infill density of the thin part while decreasing the infill density of the thick part. However, most current slicing software can only generate a uniform infill throughout one model to be printed and cannot adaptively create a filling structure with a varying infill density according to the dimensional variation of the cross-section. In the present study, to improve the mechanical properties of irregular components with variable cross-sections, an adaptive-density filling structure was proposed, in which Hilbert curve with the same order was used to fill each slice, i.e., the level of the Hilbert curves in each slice is the same, but the side length of the Hilbert curve decreases with the decreasing size of each slice; hence, the infill density of the smaller cross-section is greater than that of the larger cross-section. The ultimate bearing capacity of printed specimens with the adaptive-density filling structure was evaluated by quasi-static compression, three-point bending, and dynamic compression tests, and the printed specimens with uniform filling structure and the same overall infill density were tested for comparison. The results show that the maximum flexural load, the ultimate compression load, and the maximum impact resistance of the printed specimens with the adaptive-density filling structure were increased by 140%, 47%, and 82%, respectively, compared with their counterparts using the uniform filling structure.

9.
Microbiol Spectr ; 10(2): e0219021, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35319275

RESUMEN

Klebsiella pneumoniae is a leading cause of highly drug-resistant infections in hospitals worldwide. Strain-level bacterial identification on the genetic determinants of multidrug resistance and high pathogenicity is critical for the surveillance and treatment of this clinically relevant pathogen. In this study, metagenomic next-generation sequencing was performed for specimens collected from August 2020 to May 2021 in Ruijin Hospital, Ningbo Women and Children's Hospital, and the Second Affiliated Hospital of Harbin Medical University. Genome biology of K. pneumoniae prevalent in China was characterized based on metagenomic data. Thirty K. pneumoniae strains derived from 14 sequence types were identified by multilocus sequence typing. The hypervirulent ST11 K. pneumoniae strains carrying the KL64 capsular locus were the most prevalent in the hospital population. The phylogenomic analyses revealed that the metagenome-reconstructed strains and public isolate genomes belonging to the same STs were closely related in the phylogenetic tree. Furthermore, the pangenome structure of the detected K. pneumoniae strains was analyzed, particularly focusing on the distribution of antimicrobial resistance genes and virulence genes across the strains. The genes encoding carbapenemases and extended-spectrum beta-lactamases were frequently detected in the strains of ST11 and ST15. The highest numbers of virulence genes were identified in the well-known hypervirulent strains affiliated to ST23 bearing the K1 capsule. In comparison to traditional cultivation and identification, strain-level metagenomics is advantageous to understand the mechanisms underlying resistance and virulence of K. pneumoniae directly from clinical specimens. Our findings should provide novel clues for future research into culture-independent metagenomic surveillance for bacterial pathogens. IMPORTANCE Routine culture and PCR-based molecular testing in the clinical microbiology laboratory are unable to recognize pathogens at the strain level and to detect strain-specific genetic determinants involved in virulence and resistance. To address this issue, we explored the strain-level profiling of K. pneumoniae prevalent in China based on metagenome-sequenced patient materials. Genome biology of the targeted bacterium can be well characterized through decoding sequence signatures and functional gene profiles at the single-strain resolution. The in-depth metagenomic analysis on strain profiling presented here shall provide a promising perspective for culture-free pathogen surveillance and molecular epidemiology of nosocomial infections.


Asunto(s)
Infecciones por Klebsiella , Klebsiella pneumoniae , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Proteínas Bacterianas/genética , Niño , Femenino , Genotipo , Humanos , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/epidemiología , Infecciones por Klebsiella/genética , Klebsiella pneumoniae/genética , Metagenoma , Metagenómica , Pruebas de Sensibilidad Microbiana , Filogenia , beta-Lactamasas/genética
10.
Pathogens ; 11(8)2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-36014959

RESUMEN

Acinetobacter nosocomialis is a prevalent opportunistic pathogen that causes hospital-acquired infections. The increasing threats from A. nosocomialis infections have led to attention from the scientific and medical communities. Metagenomic next-generation sequencing (mNGS) was performed for an exudate specimen collected from an ICU patient with wound infection, followed by sepsis, in Tongji Hospital. Three assembly strategies were employed to recover the genome of A. nosocomialis in the metagenomic sample. Together with publicly available genomes of A. nosocomialis, the features of population genetics and molecular epidemiology were deeply analyzed. A draft genome was reconstructed for the metagenomic strain WHM01, derived from the ST410 A. nosocomialis dominating the microbial community, thereby prompting its highly pathogenic risk, which is associated with infection and persistence. The structure of the bacterial pangenome was characterized, including the 1862 core and 11,815 accessory genes present in the 157 strains. The genetic diversity of the genes coding for the 128 virulence factors assigned to 14 functional categories was uncovered in this nosocomial pathogen, such as the lipooligosaccharide, capsule, type IV pilus, and outer membrane proteins. Our work revealed genomic properties of ST410 A. nosocomialis, which is prevalent in China, and further highlighted that metagenomic surveillance may be a prospective application for evaluating the pathogenic characteristics of the nosocomial opportunistic pathogens.

11.
Nat Commun ; 13(1): 1116, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-35236849

RESUMEN

The expanding use of antimicrobials in livestock is an important contributor to the worldwide rapid increase in antimicrobial resistance (AMR). However, large-scale studies on AMR in livestock remain scarce. Here, we report findings from surveillance of E. coli AMR in pig farms in China in 2018-2019. We isolated E. coli in 1,871 samples from pigs and their breeding environments, and found AMR in E. coli in all provinces in mainland China. We detected multidrug-resistance in 91% isolates and found resistance to last-resort drugs including colistin, carbapenems and tigecycline. We also identified a heterogeneous group of O-serogroups and sequence types among the multidrug-resistant isolates. These isolates harbored multiple resistance genes, virulence factor-encoding genes, and putative plasmids. Our data will help to understand the current AMR profiles of pigs and provide a reference for AMR control policy formulation for livestock in China.


Asunto(s)
Antiinfecciosos , Infecciones por Escherichia coli , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , China , Farmacorresistencia Bacteriana , Escherichia coli , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/veterinaria , Granjas , Ganado , Metagenómica , Pruebas de Sensibilidad Microbiana , Porcinos
12.
Front Cell Infect Microbiol ; 12: 863399, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35372133

RESUMEN

Solid organ transplantation (SOT) is the final therapeutic option for recipients with end-stage organ failure, and its long-term success is limited by infections and chronic allograft dysfunction. Viral infection in SOT recipients is considered an important factor affecting prognosis. In this study, we retrospectively analyzed 43 cases of respiratory infections in SOT recipients using metagenomic next-generation sequencing (mNGS) for bronchoalveolar lavage fluid (BALF). At least one virus was detected in 26 (60.5%) recipients, while 17 (39.5%) were virus-negative. Among virus-positive recipients, cytomegalovirus (CMV) was detected in 14 (32.6%), Torque teno virus (TTV) was detected in 9 (20.9%), and other viruses were detected in 6 (14.0%). Prognostic analysis showed that the mortality of the virus-positive group was higher than that of the virus-negative group regardless whether it is the main cause of infection. Analysis of different types of viruses showed that the mortality of the CMV-positive group was significantly higher than that of the CMV-negative group, but no significant difference was observed in other type of virus groups. The diversity analysis of the lung microbiome showed that there was a significant difference between the virus-positive group and the negative group, in particular, the significant differences in microorganisms such as Pneumocystis jirovecii (PJP) and Moraxella osloensiswere detected. Moreover, in the presence of CMV, Pneumocystis jirovecii, Veillonella parvula, and other species showed dramatic changes in the lung of SOT patients, implying that high degree of co-infection between CMV and Pneumocystis jirovecii may occur. Taken together, our study shows that the presence of virus is associated with worse prognosis and dramatically altered lung microbiota in SOT recipients.


Asunto(s)
Microbiota , Trasplante de Órganos , Citomegalovirus/genética , Humanos , Pulmón , Microbiota/genética , Trasplante de Órganos/efectos adversos , Estudios Retrospectivos
13.
J Bacteriol ; 193(18): 5038, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21742868

RESUMEN

Extraintestinal pathogenic Escherichia coli (ExPEC) is an important pathogen which can infect humans and animals and cause many diseases outside the intestine. Here, we report the first draft genome sequence of a porcine ExPEC strain, PCN033, isolated from a pig with meningitis.


Asunto(s)
ADN Bacteriano/química , ADN Bacteriano/genética , Escherichia coli/genética , Genoma Bacteriano , Análisis de Secuencia de ADN , Animales , Escherichia coli/aislamiento & purificación , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/veterinaria , Meningitis Bacterianas/microbiología , Meningitis Bacterianas/veterinaria , Datos de Secuencia Molecular , Porcinos , Enfermedades de los Porcinos/microbiología
14.
BMC Evol Biol ; 11: 203, 2011 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-21749728

RESUMEN

BACKGROUND: Actinobacillus pleuropneumoniae is an economically important animal pathogen that causes contagious pleuropneumonia in pigs. Currently, the molecular evolutionary trajectories for this pathogenic bacterium remain to require a better elucidation under the help of comparative genomics data. For this reason, we employed a comparative phylogenomic approach to obtain a comprehensive understanding of roles of natural selective pressure and homologous recombination during adaptation of this pathogen to its swine host. RESULTS: In this study, 12 A. pleuropneumoniae genomes were used to carry out a phylogenomic analyses. We identified 1,587 orthologous core genes as an initial data set for the estimation of genetic recombination and positive selection. Based on the analyses of four recombination tests, 23% of the core genome of A. pleuropneumoniae showed strong signals for intragenic homologous recombination. Furthermore, the selection analyses indicated that 57 genes were undergoing significant positive selection. Extensive function properties underlying these positively selected genes demonstrated that genes coding for products relevant to bacterial surface structures and pathogenesis are prone to natural selective pressure, presumably due to their potential roles in the avoidance of the porcine immune system. CONCLUSIONS: Overall, substantial genetic evidence was shown to indicate that recombination and positive selection indeed play a crucial role in the adaptive evolution of A. pleuropneumoniae. The genome-wide profile of positively selected genes and/or amino acid residues will provide valuable targets for further research into the mechanisms of immune evasion and host-pathogen interactions for this serious swine pathogen.


Asunto(s)
Infecciones por Actinobacillus/microbiología , Actinobacillus pleuropneumoniae/genética , Genoma Bacteriano , Recombinación Genética , Selección Genética , Enfermedades de los Porcinos/microbiología , Actinobacillus pleuropneumoniae/aislamiento & purificación , Animales , Proteínas Bacterianas/genética , Evolución Molecular , Porcinos
15.
Microb Pathog ; 50(6): 293-302, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21320583

RESUMEN

LuxS is an enzyme involved in the activated methyl cycle and the by-product autoinducer-2 (AI-2) was a quorum sensing signal in some species. In our previous study, the functional LuxS in AI-2 production was verified in the porcine respiratory pathogen Actinobacillus pleuropneumoniae. Enhanced biofilm formation and reduced virulence were observed in the luxS mutant. To comprehensively understand the luxS function, in this study, the transcriptional profiles were compared between the A. pleuropneumoniae luxS mutant and its parental strain in four different growth phases using microarray. Many genes associated with infection were differentially expressed. The biofilm formation genes pgaABC in the luxS mutant were up-regulated in early exponential phase, while 9 genes associated with adhesion were down-regulated in late exponential phase. A group of genes involved in iron acquisition and metabolism were regulated in four growth phases. Phenotypic investigations using luxS mutant and both genetic and chemical (AI-2) complementation on these virulence traits were performed. The results demonstrated that the luxS mutant showed enhanced biofilm formation and reduced adhesion ability and these effects were not due to lack of AI-2. But AI-2 could increase biofilm formation and adhesion of A. pleuropneumoniae independent of LuxS. Growth under iron restricted condition could be controlled by LuxS through AI-2 production. These results revealed pleiotropic roles of LuxS and AI-2 on A. pleuropneumoniae virulence traits.


Asunto(s)
Actinobacillus pleuropneumoniae/fisiología , Proteínas Bacterianas/fisiología , Biopelículas/crecimiento & desarrollo , Liasas de Carbono-Azufre/fisiología , Homoserina/análogos & derivados , Hierro/metabolismo , Actinobacillus pleuropneumoniae/genética , Actinobacillus pleuropneumoniae/metabolismo , Adhesión Bacteriana/genética , Proteínas Bacterianas/genética , Liasas de Carbono-Azufre/genética , Regulación Bacteriana de la Expresión Génica , Homoserina/genética , Homoserina/fisiología , Lactonas , Mutación , Percepción de Quorum , Transcripción Genética
16.
Virol J ; 8: 101, 2011 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-21375773

RESUMEN

BACKGROUND: Rabies virus (RABV) can infect many different species of warm-blooded animals. Glycoprotein G plays a key role in viral pathogenicity and neurotropism, and includes antigenic domains that are responsible for membrane fusion and host cell receptor recognition. CASE PRESENTATION: A case of buffalo rabies in China was diagnosed by direct fluorescent antibody test, G gene reverse-transcriptase polymerase chain reaction, and RABV mouse inoculation test. Molecular characterization of the RABV was performed using DNA sequencing, phylogenetic analysis and amino acid sequence comparison based on the G gene from different species of animals. CONCLUSION: The results confirmed that the buffalo with suspected rabies was infected by RABV, which was genetically closely related to HNC (FJ602451) that was isolated from cattle in China in 2007. Comparison of the G gene among different species of animal showed that there were almost no amino acid changes among RABVs isolated from the same species of animals that distributed in a near region. However, there were many changes among RABVs that were isolated from different species of animal, or the same species from different geographic regions. This is believed to be the first case report of buffalo rabies in China, and the results may provide further information to understand the mechanism by which RABV breaks through the species barrier.


Asunto(s)
Enfermedades de los Animales/diagnóstico , Búfalos/virología , Virus de la Rabia/genética , Rabia/veterinaria , Secuencia de Aminoácidos , Enfermedades de los Animales/virología , Animales , Bovinos , China , Glicoproteínas/genética , Humanos , Ratones , Datos de Secuencia Molecular , Filogenia , Rabia/diagnóstico , Rabia/virología , Virus de la Rabia/clasificación , Virus de la Rabia/aislamiento & purificación , Alineación de Secuencia , Proteínas Virales/genética
17.
Microorganisms ; 9(10)2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34683335

RESUMEN

Aspergillus is an important fungal genus containing economically important species, as well as pathogenic species of animals and plants. Using eighteen fungal species of the genus Aspergillus, we conducted a comprehensive investigation of conserved genes and their evolution. This also allows us to investigate the selection pressure driving the adaptive evolution in the pathogenic species A. fumigatus. Among single-copy orthologs (SCOs) for A. fumigatus and the closely related species A. fischeri, we identified 122 versus 50 positively selected genes (PSGs), respectively. Moreover, twenty conserved genes of unknown function were established to be positively selected and thus important for adaption. A. fumigatus PSGs interacting with human host proteins show over-representation of adaptive, symbiosis-related, immunomodulatory and virulence-related pathways, such as the TGF-ß pathway, insulin receptor signaling, IL1 pathway and interfering with phagosomal GTPase signaling. Additionally, among the virulence factor coding genes, secretory and membrane protein-coding genes in multi-copy gene families, 212 genes underwent positive selection and also suggest increased adaptation, such as fungal immune evasion mechanisms (aspf2), siderophore biosynthesis (sidD), fumarylalanine production (sidE), stress tolerance (atfA) and thermotolerance (sodA). These genes presumably contribute to host adaptation strategies. Genes for the biosynthesis of gliotoxin are shared among all the close relatives of A. fumigatus as an ancient defense mechanism. Positive selection plays a crucial role in the adaptive evolution of A. fumigatus. The genome-wide profile of PSGs provides valuable targets for further research on the mechanisms of immune evasion, antimycotic targeting and understanding fundamental virulence processes.

18.
J Bacteriol ; 192(21): 5625-36, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20802045

RESUMEN

The Gram-negative bacterium Actinobacillus pleuropneumoniae is the etiologic agent of porcine contagious pleuropneumoniae, a lethal respiratory infectious disease causing great economic losses in the swine industry worldwide. In order to better interpret the genetic background of serotypic diversity, nine genomes of A. pleuropneumoniae reference strains of serovars 1, 2, 4, 6, 9, 10, 11, 12, and 13 were sequenced by using rapid high-throughput approach. Based on 12 genomes of corresponding serovar reference strains including three publicly available complete genomes (serovars 3, 5b, and 7) of this bacterium, we performed a comprehensive analysis of comparative genomics and first reported a global genomic characterization for this pathogen. Clustering of 26,012 predicted protein-coding genes showed that the pan genome of A. pleuropneumoniae consists of 3,303 gene clusters, which contain 1,709 core genome genes, 822 distributed genes, and 772 strain-specific genes. The genome components involved in the biogenesis of capsular polysaccharide and lipopolysaccharide O antigen relative to serovar diversity were compared, and their genetic diversity was depicted. Our findings shed more light on genomic features associated with serovar diversity of A. pleuropneumoniae and provide broader insight into both pathogenesis research and clinical/epidemiological application against the severe disease caused by this swine pathogen.


Asunto(s)
Actinobacillus pleuropneumoniae/genética , Genoma Bacteriano , Genómica , Infecciones por Actinobacillus/microbiología , Infecciones por Actinobacillus/veterinaria , Actinobacillus pleuropneumoniae/clasificación , Actinobacillus pleuropneumoniae/patogenicidad , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Técnicas de Tipificación Bacteriana , Mapeo Cromosómico , Cromosomas Bacterianos , Análisis por Conglomerados , Regulación Bacteriana de la Expresión Génica/fisiología , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia/veterinaria , Especificidad de la Especie , Porcinos , Enfermedades de los Porcinos/microbiología , Virulencia
19.
Front Microbiol ; 11: 595066, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33424798

RESUMEN

Tibetan pig is an important domestic mammal, providing products of high nutritional value for millions of people living in the Qinghai-Tibet Plateau. The genomes of mammalian gut microbiota encode a large number of carbohydrate-active enzymes, which are essential for the digestion of complex polysaccharides through fermentation. However, the current understanding of microbial degradation of dietary carbohydrates in the Tibetan pig gut is limited. In this study, we produced approximately 145 gigabases of metagenomic sequence data for the fecal samples from 11 Tibetan pigs. De novo assembly and binning recovered 322 metagenome-assembled genomes taxonomically assigned to 11 bacterial phyla and two archaeal phyla. Of these genomes, 191 represented the uncultivated microbes derived from novel prokaryotic taxa. Twenty-three genomes were identified as metagenomic biomarkers that were significantly abundant in the gut ecosystem of Tibetan pigs compared to the other low-altitude relatives. Further, over 13,000 carbohydrate-degrading genes were identified, and these genes were more abundant in some of the genomes within the five principal phyla: Firmicutes, Bacteroidetes, Spirochaetota, Verrucomicrobiota, and Fibrobacterota. Particularly, three genomes representing the uncultivated Verrucomicrobiota encode the most abundant degradative enzymes in the fecal microbiota of Tibetan pigs. These findings should substantially increase the phylogenetic diversity of specific taxonomic clades in the microbial tree of life and provide an expanded repertoire of biomass-degrading genes for future application to microbial production of industrial enzymes.

20.
Microbiol Res ; 207: 177-187, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29458852

RESUMEN

Spermidine (Spd), spermine (Spm), and putrescine (Put), which are the most widely distributed cellular polyamines, are essential for normal growth and multiplication of both eukaryotic and prokaryotic cells. In this study, we identified the only putative polyamine transport system PotABCD in Streptococcus suis, a worldwide zoonotic Gram-positive pathogen causing lethal infections in humans and pigs. It was discovered that S. suis could uptake polyamines preferably Spd and Spm. By constructing a potA deleted mutant, we confirmed that PotABCD was responsible for polyamine uptake, and PotD bound to the protein of polyamines. The four PotABCD genes were co-transcribed with murB, a gene involved in peptidoglycan (PG) synthesis. Furthermore the roles of polyamine transport system in maintaining the PG structure were detected to understand the biological significance of this co-transcription. In contrast to the wild type, the mutant ΔpotA exhibited elongated chain length and abnormal cell division morphology. Phenotypic changes were attributed to be the up-regulation of genes involved in PG synthesis and hydrolysis in ΔpotA. Additionally, polyamines functioned not only as feedback regulators of PotA by inhibiting PotA activity but also as regulators on potABCD and genes involved in PG synthesis. This study reveals the functions of PotABCD in polyamine transport and the regulatory roles of polyamines in PG synthesis. Results provide new insights into the machineries contributing to normal growth and cell division of S. suis.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Peptidoglicano/biosíntesis , Poliaminas/metabolismo , Streptococcus suis/genética , Streptococcus suis/metabolismo , Secuencia de Aminoácidos/genética , Animales , Transporte Biológico/genética , Eliminación de Gen , Técnicas de Inactivación de Genes , Humanos , Operón/genética , Putrescina/metabolismo , Espermidina/metabolismo , Espermina/metabolismo , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA