Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Mol Sci ; 23(24)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36555577

RESUMEN

Previous research shows that ginsenoside Rb3 (G-Rb3) exhibit significant protective effects on cardiomyocytes and is considered a promising treatment for myocardial infraction (MI). However, how to improve its oral bioavailability and reduce its dosage remains to be studied. Previous studies suggest that Ferruginol (FGL) may have synergistic effects with G-Rb3. However, the underlying mechanisms remain to be explored. In this study, left anterior descending branch (LAD) coronary artery ligation or oxygen-glucose deprivation-reperfusion (OGD/R) were used to establish MI models in vivo and in vitro. Subsequently, the pharmacological effects and mechanisms of G-Rb3-FGL were explored by in vitro studies. The results showed that the G-Rb3-FGL co-treatment improved heart functions better than the G-Rb3 treatment alone in MI mice models. Meanwhile, the G-Rb3-FGL co-treatment can upregulate fatty acids oxidation (FAO) and suppress oxidative stress in the heart tissues of MI mice. In vitro studies demonstrated that the synergistic effect of G-Rb3-FGL on FAO, oxidation and inflammation was abolished by RXRα inhibitor HX531 in the H9C2 cell model. In summary, we revealed that G-Rb3 and FGL have a synergistic effect against MI. They protected cardiomyocytes by promoting FAO, inhibiting oxidative stress, and suppressing inflammation through the RXRα-Nrf2 signaling pathway.


Asunto(s)
Infarto del Miocardio , Ratones , Animales , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Inflamación/metabolismo
2.
Plant Cell Physiol ; 60(1): 152-165, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30295898

RESUMEN

Cold stress is a major abiotic factor plants face during their life cycle. Although plants often exhibit phenotypic variation in cold tolerance, the underlying mechanism remains poorly understood. In the present study, the 50% lethal temperature (LT50) values of 37 Arabidopsis thaliana accessions at latitudes from 15° to 58° ranged from -13.2°C to -4.9°C and were closely correlated with the cold climates of the collection sites. According to a methylation analysis of all C-repeat (CRT)-binding factor (CBF) pathway genes, the coding and promoter regions of AtICE1, a regulator of CBF genes, exhibited the greatest variability in methylation levels among the accessions and included 5-122 methylated cytosine residues. In contrast, unmethylated or only slightly methylated genes in the CBF pathway showed little variation among the accessions. According to a gene expression analysis of four selected A. thaliana populations with distinct methylation patterns, except for the down-regulated gene AtCBF2, the expression levels of all members of the CBF pathway were negatively correlated with AtICE1 gene methylation levels. Treatment of the four A. thaliana populations with the DNA methylation inhibitory reagent 5-azacytidine resulted in a 30.0-78.3% enhancement of freezing tolerance and decreases in LT50 values of approximately 1.9-3.6°C. Similar effects were observed in drm2 mutants, including 30.0-48.3% increases in freezing tolerance and decreases in LT50 values of approximately 0.7-3.4°C. Thus, the AtICE1 methylation-regulated transcription of CBF pathway genes is responsible for the phenotypic variation in the freezing tolerance observed in A. thaliana.


Asunto(s)
Adaptación Fisiológica/genética , Arabidopsis/genética , Arabidopsis/fisiología , Variación Biológica Poblacional , Metilación de ADN/genética , Congelación , Variación Genética , Factores de Transcripción/genética , Azacitidina/farmacología , Ecosistema , Ecotipo , Electrólitos/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Genotipo , Regiones Promotoras Genéticas/genética , Factores de Transcripción/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-37403397

RESUMEN

BACKGROUND: To investigate the active ingredients and the mechanisms of Si-miaoyong- an Decoction (SMYA) in the treatment of coronary heart disease (CHD) by using network pharmacology, molecular docking technology, and in vitro validation. METHODS: Through the Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP), Uniprot database, GeneCards database, and DAVID database, we explored the core compounds, core targets and signal pathways of the effective compounds of SMYA in the treatment of CHD. Molecular docking technology was applied to evaluate the interactions between active compounds and key targets. The hypoxia-reoxygenation H9C2 cell model was applied to carry out in vitro verification experiments. A total of 109 active ingredients and 242 potential targets were screened from SMYA. A total of 1491 CHD-related targets were retrieved through the Gene- Cards database and 155 overlapping CHD-related SMYA targets were obtained. PPI network topology analysis indicated that the core targets of SMYA in the treatment of CHD include interleukin- 6 (IL-6), tumor suppressor gene (TP53), tumor necrosis factor (TNF), vascular endothelial growth factor A (VEGFA), phosphorylated protein kinase (AKT1) and mitogen-activated protein kinase (MAPK). KEGG enrichment analysis demonstrated that SMYA could regulate Pathways in cancer, phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) signaling pathway, hypoxiainducible factor-1(HIF-1) signaling pathway, VEGF signaling pathway, etc. Results: Molecular docking showed that quercetin had a significant binding activity with VEGFA and AKT1. In vitro studies verified that quercetin, the major effective component of SMYA, has a protective effect on the cell injury model of cardiomyocytes, partially by up-regulating expressions of phosphorylated AKT1 and VEGFA. CONCLUSION: SMYA has multiple components and treats CHD by acting on multiple targets. Quercetin is one of its key ingredients and may protect against CHD by regulating AKT/VEGFA pathway.


Asunto(s)
Enfermedad Coronaria , Medicamentos Herbarios Chinos , Humanos , Proteínas Proto-Oncogénicas c-akt , Factor A de Crecimiento Endotelial Vascular , Farmacología en Red , Simulación del Acoplamiento Molecular , Fosfatidilinositol 3-Quinasas , Quercetina , Enfermedad Coronaria/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Interleucina-6
4.
Front Oncol ; 12: 930586, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35912206

RESUMEN

Objective: Although the incidence of gastric cancer (GC) is decreasing, GC remains one of the leading cancers in the world. Surgical resection, radiotherapy, chemotherapy, and neoadjuvant therapy have advanced, but patients still face the risk of recurrence and poor prognosis. This study provides new insights for assessment of prognosis and postoperative recurrence of GC patients. Methods: We collected paired cancer and adjacent tissues of 17 patients with early primary GC for bulk transcriptome sequencing. By comparing the transcriptome information of cancer and adjacent cancer, 321 differentially expressed genes (DEGs) were identified. These DEGs were further screened and analyzed with the GC cohort of TCGA to establish a 3-gene prognostic model (PLCL1, PLOD2 and ABCA6). At the same time, the predictive ability of this risk model is validated in multiple public data sets. Besides, the differences in immune cells proportion between the high- and low-risk groups were analyzed by the CIBERSORT algorithm with the Leukocyte signature matrix (LM22) gene signature to reveal the role of the immune microenvironment in the occurrence and development of GC. Results: The model could divide GC samples from TCGA cohorts into two groups with significant differences in overall and disease-free survival. The excellent predictive ability of this model was also validated in multiple other public data sets. The proportion of these immune cells such as resting mast cells, T cells CD4+ memory activated and Macrophages M2 are significantly different between high and low risk group. Conclusion: These three genes used to build the models were validated as biomarkers for predicting tumor recurrence and survival. They may have potential significance for the treatment and diagnosis of patients in the future, and may also promote the development of targeted drugs.

5.
Phytomedicine ; 106: 154439, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36108374

RESUMEN

BACKGROUND: Doxorubicin (DOX) is a powerful anti-tumor anthracycline drug. However, its clinical use is limited due to the side effect of cardiotoxicity. Tanshinone I (Tan I) is one of the major tanshinones isolated from Salvia miltiorrhiza. Studies have shown that Tan I is effective in the treatment of cardiovascular diseases. However, the potential effects of Tan I against DOX-induced cardiotoxicity (DIC) have yet to be explored. PURPOSE: This study aimed to explore whether Tan I can protect against DIC and to reveal whether Tan I can exert anti-oxidative effect by regulating nuclear erythroid factor 2-related factor 2 (Nrf2) pathway. METHODS: DIC models were established in vivo by intravenous injection of DOX. Echocardiography was used to monitor the cardiac function of mice. Transmission electron microscopy was used to assess mitochondrial damage. Oxidative stress was measured by dihydroethidium (DHE) staining and western blotting. The accumulation and nuclear translocation of Nrf2 was detected by immunofluorescence. H9C2 cellular DIC model was established in vitro to explore the pharmacological mechanism. Nrf2 small interfering (si)-RNA was applied to H9C2 cells to explore whether Tan I exerted protective effect against DIC through Nrf2 signaling pathway. The protective effects of Tan I on mitochondrial function and mitochondrial membrane permeability were measured by MitoSOX™ Red and JC-1 staining assays, respectively. RESULTS: In vivo experiments revealed that Tan I could improve cardiac function and protect against DOX-induced myocardial structural damages in mice models. The oxidative stress induced by DOX was suppressed and apoptosis was mitigated by Tan I treatment. Tan I protected against DOX-induced mitochondrial structural damage. Meanwhile, key proteins in Nrf2 pathways were upregulated by Tan I treatment. In vitro studies showed that Tan I attenuated DOX-induced generation of reactive oxygen species (ROS) in cultured H9C2 cells, reduced apoptotic rates, protected mitochondrial functions and up-regulated Nrf2 signaling pathway. Tan I promoted accumulation and nuclear translocation of Nrf2 protein. In addition, interference of Nrf2 abrogated the anti-oxidative effects of Tan I and reversed the expressions of key proteins in Nrf2 pathway. The protective effects of Tan I on mitochondrial integrity was also mitigated by Nrf2 interference. CONCLUSION: Tan I could reduce oxidative stress and protect against DIC through regulating Nrf2 signaling pathway. Nrf2 is a potential target and Tan I is a novel candidate agent for the treatment of DIC.


Asunto(s)
Abietanos , Cardiotoxicidad , Factor 2 Relacionado con NF-E2 , Animales , Ratones , Abietanos/farmacología , Apoptosis , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/metabolismo , Doxorrubicina/efectos adversos , Miocitos Cardíacos , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , ARN , Transducción de Señal
6.
Transl Cancer Res ; 10(10): 4387-4402, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35116297

RESUMEN

BACKGROUND: In recent years, the morbidity and mortality of cancer patients have continued to increase in China, and there is an urgent need to develop an effective method to monitor tumor dynamics and measure tumor burden. Derived from the cell-free fraction of blood in cancer patients, circulating tumor DNA (ctDNA) has been regarded as a promising surrogate for tumor tissue biopsies. With the development of sequencing technology, ctDNA has been recognized as a specific and highly sensitive biomarker, and it has become a hot research spot in recent years. METHODS: In this paper, we investigated clonal changes before and after surgery in liver cancer patients using ctDNA. RESULTS: First, we evaluated the accuracy and stability of the method in ctDNA detection using virtual tumor samples with known mutations. The results showed that our method detected variants with an allelic frequency of at least 0.5%. We then applied this method to 34 liver cancer patients. A total of 266 clinically relevant mutations were identified in the pretreatment plasma samples. Through the analysis of plasma DNA samples at different treatment time points, we also investigated the possibility of using ctDNA as a prognostic factor to reflect tumor dynamics and to evaluate clinical responses. CONCLUSIONS: The results demonstrated that targeted high-depth next-generation sequencing can be used in ctDNA detection. Compared to traditional biopsy, the detection of ctDNA provides more information for human liver cancer, which is essential to guide the selection of therapy and predict prognosis.

7.
Am J Pathol ; 175(6): 2686-96, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19893047

RESUMEN

Intimal calcification is a feature of advanced atherosclerotic disease that predicts a two- to eightfold increase in the risk of coronary events. Type I collagen promotes vascular smooth muscle cell-mediated calcification, although the mechanism by which this occurs is unknown. The discoidin domain receptor 1 (DDR1) is a collagen receptor that is emerging as a critical mediator of atherosclerosis. To determine whether DDR1 is involved in intimal calcification, we fed male Ddr1(-/-);Ldlr(-/-) and Ddr1(+/+);Ldlr(-/-) mice an atherogenic diet for 6, 12, or 24 weeks. DDR1 deficiency significantly reduced the calcium content of the aortic arch, and microcomputed tomography demonstrated a significant decrease in hydroxyapatite deposition after 24 weeks of atherogenic diet. Reduced calcification was correlated with decreases in macrophage accumulation and tumor necrosis factor alpha staining, suggesting that the reduction in calcification was in part due to decreased inflammation. The chondrogenic markers type II collagen, type X collagen, and Sox-9 were expressed within the mineralized foci. An in vitro assay performed with vascular smooth muscle cells revealed that DDR1 was required for cell-mediated calcification of the matrix, and Ddr1(+/+) smooth muscle cells expressed more alkaline phosphatase activity, whereas Ddr1(-/-) smooth muscle cells expressed elevated levels of mRNA for nucleotide pyrophosphatase phosphodiesterase 1, an inhibitor of tissue mineralization. Taken together, our results demonstrate that DDR1 mediates an important mechanism for atherosclerotic calcification.


Asunto(s)
Aterosclerosis/metabolismo , Calcinosis/metabolismo , Miocitos del Músculo Liso/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Animales , Aorta Torácica/patología , Aterosclerosis/genética , Aterosclerosis/patología , Calcinosis/genética , Calcinosis/patología , Dieta Aterogénica , Receptor con Dominio Discoidina 1 , Inmunohistoquímica , Inflamación/metabolismo , Inflamación/patología , Masculino , Ratones , Ratones Noqueados , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Proteínas Tirosina Quinasas Receptoras/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Túnica Íntima/metabolismo , Túnica Íntima/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA