Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
FASEB J ; 37(10): e23160, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37750502

RESUMEN

Glioblastoma multiforme (GBM) is the most malignant brain tumor with rapid angiogenesis. How to inhibit GBM angiogenesis is a key problem to be solved. To explore the targets of inhibiting GBM angiogenesis, this study confirmed that the expression of circMTA1 (hsa_circ_0033614) was significantly upregulated in human brain microvascular endothelial cells exposed to glioma cell-conditioned medium (GECs). The expression of circMTA1 in the cytoplasm was significantly higher than that in the nucleus. Upregulated circMTA1 in GECs can promote cell proliferation, migration, and tube formation. Further exploration of the circularization mechanism of circMTA1 confirmed that KHDRBS1 protein can bind to the upstream and downstream flanking sequences of circMTA1 and promote circMTA1 biogenesis by coordinating Alu element pairing. KHDRBS1 upregulated the proliferation, migration, and tube formation of GECs by promoting the biogenesis of circMTA1. CircMTA1 can encode the protein MTA1-134aa by internal ribosome entry site sequence-mediated translation mechanism, and promote the proliferation, migration, and tube formation of GECs through the encoded MTA1-134aa. This study provides a new target for inhibiting angiogenesis in brain GBM and a new strategy for improving the therapeutic efficacy of GBM.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/genética , Células Endoteliales , Elementos Alu , Neoplasias Encefálicas/genética , Proteínas de Ciclo Celular , Proteínas de Unión al ADN , Proteínas de Unión al ARN , Proteínas Adaptadoras Transductoras de Señales
2.
Exp Cell Res ; 331(2): 257-66, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25592443

RESUMEN

Our previous study demonstrated that low-dose endothelial monocyte-activating polypeptide-II (EMAP-II) induces blood-tumor barrier (BTB) opening via the RhoA/Rho kinase/protein kinase C (PKC)-α/ß signaling pathway and that PKC-ζ is involved in this process via other mechanisms. In the present study, using an in vitro BTB model, we detected the exact signaling mechanisms by which PKC-ζ activation affects EMAP-II-induced BTB hyperpermeability. Our results showed that three types of serine/threonine (Ser/Thr) protein phosphatases (PPs), namely PP1, PP2A, and PP2B, were expressed by rat brain microvascular endothelial cells (RBMECs). There was an interaction between PKC-ζ and PP2A in RBMECs. In addition, EMAP-II induced a significant increase in both the expression and the activity of PP2A in RBMECs. Inhibition of PKC-ζ with PKC-ζ pseudosubstrate inhibitor (PKC-ζ-PI) completely blocked EMAP-II-induced PP2A activation. Conversely, inhibition of PP2A with okadaic acid (OA) had no effect on EMAP-II-induced PKC-ζ activation. Like PKC-ζ-PI, OA partially prevented EMAP-II-induced BTB hyperpermeability and occludin redistribution in RBMECs. Neither PKC-ζ-PI nor OA affected EMAP-II-induced phosphorylation of myosin light chain and redistribution of actin cytoskeleton in RBMECs. Taken together, our present study demonstrated that low-dose EMAP-II increases BTB permeability by activating the PKC-ζ/PP2A signaling pathway, which consequently leads to the disruption of TJs and impairment of endothelial barrier function.


Asunto(s)
Antineoplásicos/farmacología , Citocinas/farmacología , Proteínas de Neoplasias/farmacología , Proteína Quinasa C/metabolismo , Proteína Fosfatasa 2/metabolismo , Proteínas de Unión al ARN/farmacología , Uniones Estrechas/patología , Citoesqueleto de Actina/metabolismo , Animales , Neoplasias Encefálicas/patología , Impedancia Eléctrica , Células Endoteliales/metabolismo , Inhibidores Enzimáticos/farmacología , Glioma/patología , Cadenas Ligeras de Miosina/metabolismo , Ocludina/metabolismo , Ácido Ocadaico/farmacología , Permeabilidad/efectos de los fármacos , Fosforilación/efectos de los fármacos , Unión Proteica , Proteína Quinasa C/antagonistas & inhibidores , Proteína Fosfatasa 1/biosíntesis , Proteína Fosfatasa 2/antagonistas & inhibidores , Proteína Fosfatasa 2/biosíntesis , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Uniones Estrechas/efectos de los fármacos , Células Tumorales Cultivadas
3.
Med Sci Monit ; 22: 710-6, 2016 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-26936749

RESUMEN

BACKGROUND Human brain glioma is the most common endocranial tumor; its mortality and morbidity are very high. The objective of this study was to determine whether miR-338-3p can regulate malignant biological behaviors of glioma cells by targeted silencing of MACC1. MATERIAL AND METHODS The expression of miR-338-3p was detected by quantitative real-time PCR in brain glioma tissues and cell lines. Bioinformatics software was used to predict some potential target genes of miR-338-3p. Luciferase activities assay was used to verify the combination between target genes and miR-338-3p. And MACC1 protein expression was detected by Western blot. The apoptosis and proliferation ability were analyzed by MTT and flow cytometry assay. RESULTS Compared with normal brain tissues and cells, miR-338-3p in glioma tissues and cell lines was confirmed to be expressed at low levels, and down-regulation of miR-338-3p tended to be correlated with worse histological grade. Up-regulation of miR-338-3p promoted apoptosis and sharply inhibited cell proliferation ability of U251 and U87 cells. The luciferase activities assay, biotin-avidin pull-down assay, and western blot analysis verified that MACC1 was a specific target gene of miR-338-3p. Subsequent experiments found that up-regulation of MACC1 significantly inhibited the apoptosis and increased the cell proliferation ability of U251 and U87 cells. The regulation effects of miR-338-3p on malignant biological behaviors of glioma cells can be partly reversed by up-regulation of MACC1. CONCLUSIONS Down-regulation of miR-338-3p was an independent prognostic biomarker associated with poor prognosis in glioma patients; miR-338-3p acted as a tumor-suppressing gene whose silencing can inhibit malignant biological behaviors of glioma cells. MACC1 was a specific target gene of miR-338-3p, which regulates malignant biological behaviors of glioma cells partly through directly silencing MACC1 expression.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Genes Relacionados con las Neoplasias , Glioma/genética , Glioma/patología , MicroARNs/metabolismo , Factores de Transcripción/genética , Regiones no Traducidas 3'/genética , Secuencia de Bases , Sitios de Unión , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , Datos de Secuencia Molecular , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transactivadores , Factores de Transcripción/metabolismo , Transfección , Regulación hacia Arriba/genética
4.
J Cell Physiol ; 230(8): 1713-28, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25201410

RESUMEN

CRM197 is a naturally nontoxic diphtheria toxin mutant that binds and inhibits heparin-binding epidermal growth factor-like growth factor. CRM197 serves as carrier protein for vaccine and other therapeutic agents. CRM197 also inhibits the growth, migration, invasion, and induces apoptosis in various tumors. Vascular cell adhesion molecule-1 (VCAM-1) is an important cell surface adhesion molecule associated with malignancy of gliomas. In this work, we aimed to investigate the role and mechanism of CRM197 combined with shRNA interference of VCAM-1 (shRNA-VCAM-1) on the migration, invasion, and apoptosis of glioblastoma cells. U87 and U251 human glioblastoma cells were treated with CRM197 (10 µg/ml) and shRNA interfering technology was employed to silence VCAM-1 expression. Cell viability, migration, invasiveness, and apoptosis were assessed with CCK8, Transwell and Annexin V-PE/7-AAD staining. Activation of cleaved caspase-3, 8, and 9, activity of matrix metalloproteinase-2/9 (MMP-2/9), and expression of phosphorylated Akt (p-Akt) were also checked. Results showed that CRM197 and shRNA-VCAM-1 not only significantly inhibited the cell proliferation, migration, invasion, but also promoted the apoptosis of U87 and U251 cells. Combined treatment of both displayed enhanced inhibitory effects on the malignant biological behavior of glioma cells. The activation of cleaved caspase-3, 8, 9 was promoted, activity of MMP-2 and MMP-9 and expression of p-Akt were inhibited significantly by the treatment of CRM197 and shRNA-VCAM-1 alone or in combination, indicating that the combination of CRM197 with shRNA-VCAM-1 additively inhibited the malignant behavior of human glioblastoma cells via activating caspase-3, 8, 9 as well as inhibiting MMP-2, MMP-9, and Akt pathway.


Asunto(s)
Antineoplásicos/farmacología , Proteínas Bacterianas/farmacología , Terapia Combinada/métodos , Terapia Genética/métodos , Glioblastoma/patología , Molécula 1 de Adhesión Celular Vascular/metabolismo , Apoptosis/efectos de los fármacos , Western Blotting , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Humanos , Interferencia de ARN , ARN Interferente Pequeño , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transfección
5.
Biochem Biophys Res Commun ; 468(1-2): 105-12, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26541455

RESUMEN

Therapeutic applications of microRNAs (miRNAs) in chemotherapy were confirmed to be valuable, but there is rare to identify their specific roles and functions in shikonin treatment toward tumors. Here, for the first time, we reported that miR-143 played a critical role in the antitumor activity of shikonin in glioblastoma stem cells (GSCs). The results showed that the expression of miR-143 was downregulated in shikonin treated GSCs within 24 h. MiR-143 overexpression significantly enhanced the inhibitory effect of shikonin toward GSCs on cell viability. Besides, miR-143 overexpression caused a significant increase in the apoptotic fraction and made apoptosis occur earlier. Further investigation identified that BAG3, an apoptotic regulator, was a functional target of miR-143 in shikonin treated GSCs. The expression of BAG3 was upregulated in shikonin treated GSCs within 24 h. MiR-143 overexpression significantly reversed the high expression of BAG3 in shikonin treated GSCs. Moreover, it was confirmed that the enhanced cytotoxicity of shikonin by miR-143 overexpression was reversed by BAG3 overexpression both in vitro and in vivo, suggesting that the enhanced tumor suppressive effects by miR-143 overexpression was at least partly through the regulation of BAG3. Taken together, for the first time, our results demonstrate that miR-143 could enhance the antitumor activity of shikonin toward GSCs through reducing BAG3 expression, which may provide a novel therapeutic strategy for enhancing the treatment efficacy of shikonin toward GSCs.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Antineoplásicos Fitogénicos/uso terapéutico , Proteínas Reguladoras de la Apoptosis/genética , Medicamentos Herbarios Chinos/uso terapéutico , Glioblastoma/tratamiento farmacológico , MicroARNs/genética , Naftoquinonas/uso terapéutico , Células Madre Neoplásicas/efectos de los fármacos , Animales , Regulación hacia Abajo/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioblastoma/genética , Glioblastoma/patología , Humanos , Masculino , Ratones Desnudos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Células Tumorales Cultivadas , Regulación hacia Arriba/efectos de los fármacos
6.
Biochem Biophys Res Commun ; 466(1): 103-10, 2015 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-26321663

RESUMEN

Though previous study demonstrated that shikonin could exert its antitumor activity by inducing apoptosis and necrosis, the pro-survival mechanisms involved in its antitumor process are still little to know. In the present study, for the first time, we found a protective mechanism was simultaneously activated which caused the reduced sensitivity of glioblastoma stem cells (GSCs) to the cytotoxicity of shikonin. Reduced active caspase-9 expression and enhanced mitochondrial membrane potential (MMP) were intriguingly observed within 24 h treatment by shikonin in GSCs. Further investigation identified that Endoplasmic Reticulum Stress (ERS) was involved in its antitumor process, which compromised the cytotoxicity of shikonin toward GSCs. Inhibiting ERS by 4-phenylbutyric acid (4-PBA) markedly enhanced the cytotoxicity of shikonin in GSCs. The consistent result was simultaneously observed in the GSCs-xenografted mice. Furthermore, our results identified that JNK/c-Jun pathway was involved in the antitumor process of shikonin, providing a mechanism by which ERS reduced the cytotoxicity of shikonin toward GSCs. Altogether, the novel observation in the present study identified that inhibiting ERS would be an attractive new approach to enhance the therapeutic potency of shikonin toward GSCs.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Glioblastoma/tratamiento farmacológico , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Naftoquinonas/uso terapéutico , Células Madre Neoplásicas/efectos de los fármacos , Animales , Antineoplásicos Fitogénicos/farmacología , Células Cultivadas , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Masculino , Ratones Desnudos , Naftoquinonas/farmacología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología
7.
Biochem Biophys Res Commun ; 457(4): 595-601, 2015 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-25600803

RESUMEN

The present study was performed to examine whether Endothelial-monocyte-activating polypeptide II (EMAP II) could inhibit glioma growth by inducing rat brain glioma C6 cells apoptosis. The results revealed that the EMAP II decreased cell viability of rat C6 glioma cells in a time-dependent manner. Apoptotic proportion was increased gradually after EMAP II. EMAP II induced the decrease in mitochondrial membrane potential and the release of cytochrome c into the cytosol, followed by activation of caspase-9 and caspase-3. Meanwhile, EMAP II-induced apoptosis was accompanied by an increase of reactive oxygen species (ROS). The significant up-regulation in the expressions of Bax and Apaf-1 as well as down-regulation in the expression of Bcl-2 was observed. The time course change of ROS was prior to the changes of above investigated indexes. All of these results strongly suggest that EMAP II could induce rat C6 glioma cells apoptosis via the mitochondrial pathway, and ROS, Bax/Bcl-2 might be involved in this processing.


Asunto(s)
Apoptosis , Neoplasias Encefálicas/metabolismo , Citocinas/metabolismo , Glioma/metabolismo , Mitocondrias/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Animales , Encéfalo/metabolismo , Encéfalo/patología , Neoplasias Encefálicas/patología , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Línea Celular Tumoral , Glioma/patología , Mitocondrias/patología , Monocitos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo , Proteína X Asociada a bcl-2/metabolismo
8.
Biochem Biophys Res Commun ; 464(1): 118-25, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-26106824

RESUMEN

After demonstrating bradykinin (BK) could increase the permeability of blood-tumor barrier (BTB) via opening the tight junction (TJ), and that the possible mechanism is unclear, we demonstrated that BK could increase the expressions of eNOS and nNOS and promote ZONAB translocation into nucleus. NOS inhibitors l-NAME and 7-NI could effectively block the effect of BK on increasing BTB permeability, decreasing the expressions of claudin-5 and occludin and promoting the translocation of ZONAB. Overexpression of ZONAB could significantly enhance BK-mediating BTB permeability. Meanwhile, chromatin immunoprecipitation verified ZONAB interacted with the promoter of claudin-5 and occludin respectively. This study indicated NOS/NO/ZONAB pathway might be involved in BK's increasing the permeability of BTB.


Asunto(s)
Bradiquinina/farmacología , Neoplasias Encefálicas/metabolismo , Regulación Neoplásica de la Expresión Génica , Glioma/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Óxido Nítrico/metabolismo , Vasodilatadores/farmacología , Animales , Barrera Hematoencefálica/efectos de los fármacos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Claudina-5/antagonistas & inhibidores , Claudina-5/genética , Claudina-5/metabolismo , Inhibidores Enzimáticos/farmacología , Femenino , Glioma/genética , Glioma/patología , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico Sintasa de Tipo I/genética , Óxido Nítrico Sintasa de Tipo III/genética , Ocludina/antagonistas & inhibidores , Ocludina/genética , Ocludina/metabolismo , Permeabilidad/efectos de los fármacos , Regiones Promotoras Genéticas , Unión Proteica , Transporte de Proteínas , Ratas , Ratas Wistar , Transducción de Señal , Uniones Estrechas/efectos de los fármacos , Uniones Estrechas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
J Neurosci Res ; 93(4): 666-77, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25421718

RESUMEN

This study investigates the effect of insulin combined with idebenone on blood-brain barrier (BBB) permeability in experimental streptozotocin-induced diabetic rats as well as the underlying mechanisms. With a diabetic rat model, we show that insulin and idebenone normalize body weight and water intake and restore BBB permeability and that their combination displays a synergistic effect. The results from transmission electron microscopy show that the combination of insulin and idebenone significantly closed the tight junction (TJ) in diabetic rats. The results from Western blotting in diabetic rats show that the upregulation of TJ-associated proteins occludin, and zonula occludens (ZO)-1 caused by the combination of insulin and idebenone is more remarkable than that with either agent alone. In addition, the activations of reactive oxygen species (ROS) and advanced glycation end products (AGEs) and the expression levels of receptors for advanced glycation end-products (RAGE) and nuclear factor-κB (NF-κB) were significantly decreased after treatment with insulin and idebenone in diabetic rats. These results suggest that the combination of insulin and idebenone could decrease the BBB permeability in diabetic rats by upregulating the expression of occludin, claudin-5, and ZO-1 and that the ROS/AGE/RAGE/NF-κB signal pathway might be involved in the process.


Asunto(s)
Antioxidantes/uso terapéutico , Barrera Hematoencefálica/fisiopatología , Diabetes Mellitus Experimental/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Insulina/uso terapéutico , Ubiquinona/análogos & derivados , Animales , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/ultraestructura , Permeabilidad Capilar/efectos de los fármacos , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/patología , Modelos Animales de Enfermedad , Masculino , Microscopía Electrónica de Transmisión , Nucleoproteínas/metabolismo , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Estadísticas no Paramétricas , Ubiquinona/uso terapéutico
10.
J Neurosci Res ; 93(12): 1891-902, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26356851

RESUMEN

miR-18a represses angiogenesis and tumor evasion by weakening vascular endothelial growth factor and transforming growth factor-ß signaling to prolong the survival of glioma patients, although it is thought to be an oncogene. This study investigates the potential effects of miR-18a on the permeability of the blood-tumor barrier (BTB) and its possible molecular mechanisms. An in vitro BTB model was successfully established. The endogenous expression of miR-18a in glioma vascular endothelial cells (GECs) was significantly lower than that in normal vascular ECs, and the overexpression of miR-18a significantly increased the permeability of the BTB as well as downregulating the mRNA and protein expressions of tight junction-related proteins zonula occluden-1 (ZO-1), claudin-5, and occludin in GECs. Dual luciferase reporter assays revealed that miR-18a bound to the 3'-untranslated region (3'UTR) of myocyte enhancer factor 2D (MEF2D). The overexpression of both miR-18a and MEF2D with the 3'UTR significantly weakened the effect caused by miR-18a of decreasing the mRNA and protein expressions of ZO-1, claudin-5 and occludin and of increasing the permeability of the BTB. Chromatin immunoprecipitation showed that MEF2D could directly bind to KLF4 promoter. This study shows that miR-18a targets and negatively regulates MEF2D, which further regulates tight junction-related proteins ZO-1, claudin-5, and occludin through transactivation of KLF4 and, finally, changes the permeability of the BTB. MiR-18a should garner growing attention because it might serve as a potential target in opening the BTB and providing a new strategy for the treatment of gliomas.


Asunto(s)
Regulación hacia Abajo/fisiología , Células Epiteliales/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción MEF2/metabolismo , MicroARNs/metabolismo , Proteínas de la Zonula Occludens/metabolismo , Barrera Hematoencefálica/citología , Permeabilidad Capilar/fisiología , Línea Celular Transformada , Inmunoprecipitación de Cromatina , Claudina-5/metabolismo , Glioma/patología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Peroxidasa de Rábano Silvestre/metabolismo , Humanos , Factor 4 Similar a Kruppel , MicroARNs/genética , Ocludina/metabolismo , Permeabilidad , ARN Mensajero/metabolismo , Transfección , Proteínas de la Zonula Occludens/genética , Proteína de la Zonula Occludens-1/metabolismo
11.
Mol Biol Rep ; 42(3): 721-7, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25394756

RESUMEN

To investigate whether miR-21 can affect the apoptosis and proliferation of glioblastoma cancer stem cells (GSCs) from down-regulating FASLG. The expression of miRNA-21 was detected by quantitative real-time PCR in normal brain tissue and glioblastoma samples, and the changes of miRNA-21 expression between GSCs and non-GSCs were also detected. The apoptosis and proliferation ability of miR-21 in GSCs were analyzed by MTT and flow cytometry assay after anti-miR-21 transfection. For the regulation mechanism analysis of miR-21, TargetScan, PicTar and microRNA were selected to predict some potential target genes of miR-21. The predicted gene was identified to be the direct and specific target gene of miR-21 by luciferase activities assay and western blot. RNA interference technology was used to confirm the apoptosis and proliferation effects of miR-21 were directly induced by FASLG. The expression of miR-21 increased significantly in glioblastoma contrast to normal brain tissue, and miR-21 up-regulated in GSCs remarkably. The proliferation of GSCs cell could be inhibited with high-expression of miR-21 and this effect could be restored by miR-21 knocked down. Mechanism analysis revealed that FASLG was a specific and direct target gene of miR-21. The advanced effects of anti-miR-21 on GSCs apoptosis and proliferation were mediated by expression of silenced FASLG. In summary, aberrantly expressed miR-21 regulates GSCs apoptosis and proliferation partly through directly down-regulating FASLG protein expression in GSCs and this might offer a new potential therapeutic stratagem for glioblastoma.


Asunto(s)
Apoptosis/genética , Proteína Ligando Fas/genética , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , MicroARNs/genética , Células Madre Neoplásicas/metabolismo , Interferencia de ARN , Regiones no Traducidas 3' , Secuencia de Bases , Sitios de Unión , Línea Celular Tumoral , Proliferación Celular , Proteína Ligando Fas/química , Humanos , MicroARNs/química , Regulación hacia Arriba
12.
Med Sci Monit ; 21: 1002-7, 2015 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-25858624

RESUMEN

BACKGROUND: The aim of this study was to determine the influence of the BMI1 gene on chemotherapy sensitivity in human glioma cells. MATERIAL/METHODS: The expression of the BMI1 gene in 41 cases of human brain glioma was determined by quantitative real-time PCR. The silencing effect of RNA interference on the BMI1 gene was detected by Western blot. Methyl thiazolyl tetrazolium assay (MTT) and flow cytometry methods were used to determine the cell viability and apoptosis rate of the U251 cells with BMI1 silencing. After those U251 cells were treated with Cisplatin (DDP), the cell viability and apoptosis rate were further detected. RESULTS: The BMI1 mRNA in glioma was remarkably up-regulated, 176.3% as much as that in peri-cancerous tissues (P<0.05). The siRNA-BMI1 significantly and effectually inhibited the expression of BMI1 protein (P<0.05). The cell viability decreased in U251 cells with BMI1 silenced, and the apoptosis rate upgraded significantly (P<0.05 for both). After treating with DDP at various concentrations (1, 3, and 5 µg/ml), the cell viability in the BMI1-slienced U251 cells was much lower than that in corresponding control U251 cells at each DDP concentration (P<0.05 for all), and the apoptosis rate showed the opposite changing trends (P<0.05 for all). CONCLUSIONS: There is a notable relationship between the over-expression of BMI1 and the carcinogenesis of gliomas. The silence of BMI1 inhibited cell proliferation and enhanced the apoptosis of the U251 cells, and increased the chemotherapy sensitivity of U251 cells to DDP.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Resistencia a Antineoplásicos/genética , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Complejo Represivo Polycomb 1/antagonistas & inhibidores , Complejo Represivo Polycomb 1/genética , Anciano , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Astrocitoma/tratamiento farmacológico , Astrocitoma/genética , Astrocitoma/patología , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Cisplatino/farmacología , Femenino , Glioblastoma/patología , Humanos , Masculino , Persona de Mediana Edad , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Neoplásico/genética , ARN Neoplásico/metabolismo , Regulación hacia Arriba
13.
Int J Mol Sci ; 16(10): 23823-48, 2015 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-26473829

RESUMEN

Shikonin is an anthraquinone derivative extracted from the root of lithospermum. Shikonin is traditionally used in the treatment of inflammatory and infectious diseases such as hepatitis. Shikonin also inhibits proliferation and induces apoptosis in various tumors. However, the effect of shikonin on gliomas has not been fully elucidated. In the present study, we aimed to investigate the effects of shikonin on the migration and invasion of human glioblastoma cells as well as the underlying mechanisms. U87 and U251 human glioblastoma cells were treated with shikonin at 2.5, 5, and 7.5 µmol/L and cell viability, migration and invasiveness were assessed with CCK8, scratch wound healing, in vitro Transwell migration, and invasion assays. The expression and activity of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) and the expression of phosphorylated ß-catenin (p-ß-catenin) and phosphorylated PI3K/Akt were also checked. Results showed that shikonin significantly inhibited the cell proliferation, migration, invasion, and expression of MMP-2 and MMP-9 in U87 and U251 cells. The expression of p-ß-catenin showed contrary trends in two cell lines. It was significantly inhibited in U87 cells and promoted in U251 cells. Results in this work indicated that shikonin displayed an inhibitory effect on the migration and invasion of glioma cells by inhibiting the expression and activity of MMP-2 and -9. In addition, shikonin also inhibited the expression of p-PI3K and p-Akt to attenuate cell migration and invasion and MMP-2 and MMP-9 expression in both cell lines, which could be reversed by the PI3K/Akt pathway agonist, insulin-like growth factor-1 (IGF-1).


Asunto(s)
Movimiento Celular/efectos de los fármacos , Glioblastoma/patología , Naftoquinonas/farmacología , Invasividad Neoplásica/patología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , beta Catenina/antagonistas & inhibidores , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Humanos , Factor I del Crecimiento Similar a la Insulina , Metaloproteinasa 2 de la Matriz/biosíntesis , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/biosíntesis , Metaloproteinasa 9 de la Matriz/metabolismo , Medicina Tradicional China , Fosfatidilinositol 3-Quinasas/biosíntesis , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/biosíntesis , Proteínas Proto-Oncogénicas c-akt/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/genética , Transducción de Señal/efectos de los fármacos , beta Catenina/genética , beta Catenina/metabolismo
14.
Cell Physiol Biochem ; 34(3): 753-67, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25170565

RESUMEN

BACKGROUND: This study was performed to explore the mechanism underlying tinnitus by investigating the changes in the synaptic ribbons and RIBEYE expression in cochlear inner hair cells in salicylate-induced tinnitus. METHODS: C57BL/6J mice were injected with salicylate (350 mg/kg) for 10 days and grouped. Behavioral procedures were performed to assess whether the animals experienced tinnitus. The specific presynaptic RIBEYE protein and non-specific postsynaptic glutamate receptor 2&3 protein in basilar membrane samples were examined by immunofluorescent labeling. RT-PCR and Western blot assays were used to examine RIBEYE expression. Serial sections were used to build three-dimensional models using 3ds MAX software to evaluate the changes in the synaptic ribbons. RESULTS: The administration of salicylate increased false positives in the behavioral procedure from 3 d to 10 d. The membrane profiles of inner hair cells in all mice were intact. The number of synaptic ribbons in the salicylate group increased on the 7(th) d and decreased on the 9(th) and 10(th) d. mRNA and protein expression of RIBEYE were initially up-regulated and later down-regulated by injecting salicylate for 10 consecutive days. CONCLUSION: This change in the ribbon synapses of cochlear inner hair cells in salicylate-induced mice might serve as a compensatory mechanism in the early stages of ototoxicity and contribute to tinnitus later. The alteration of RIBEYE expression could be responsible for the changes in the morphology of ribbon synapses and for salicylate-induced tinnitus.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Ácido Salicílico/efectos adversos , Sinapsis/metabolismo , Acúfeno/inducido químicamente , Animales , Secuencia de Bases , Western Blotting , Proteínas Co-Represoras , Cartilla de ADN , Técnica del Anticuerpo Fluorescente , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa , Acúfeno/metabolismo
15.
J Neurosci Res ; 92(6): 703-13, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24523141

RESUMEN

This study aims to determine the effects of vascular endothelial growth factor (VEGF), papaverine (PA), and the combination of VEGF and PA on the permeability of the blood-tumor barrier (BTB) and to determine possible molecular mechanisms contributing to the effects. In the rat C6 glioma model, the extravasation of Evans blue (EB) through the BTB was increased significantly by VEGF and PA. VEGF-induced and PA-induced increase of EB extravasation was further increased after combining VEGF with PA infusion. Transmission electron microscopy (TEM) showed that the combination of VEGF and PA not only opened tight junctions (TJ) dramatically but increased the presence of pinocytotic vesicles of brain microvascular endothelial cells (BMECs) significantly. Meanwhile, the downregulation of the TJ-associated proteins occludin and claudin-5 and the upregulation of the caveolae structure proteins caveolin-1 and caveolin-2 caused by the combination of VEGF and PA were observed by Western blot and immunohistochemistry, which were more remarkable than those by the two strategies separately. In addition, after VEGF and PA infusion, the results of radioimmunoassay, Western blot, and enzyme-linked immunosorbent assay (ELISA) revealed a significant increase in expression levels of cGMP and protein kinase G-1 (PKG-1) and the activation of nuclear factor-κB (NF-κB) p65. This study demonstrates that combination of VEGF and PA can increase the permeability of the BTB by a paracellular pathway (downregulation of occludin and claudin-5) and a transcellular pathway (upregulation of caveolin-1 and caveolin-2) and that the cGMP/PKG/NF-κB signal pathway might be involved in the modulation process.


Asunto(s)
Permeabilidad Capilar/efectos de los fármacos , Neoplasias Experimentales/irrigación sanguínea , Neoplasias Experimentales/patología , Papaverina/farmacología , Factor A de Crecimiento Endotelial Vascular/farmacología , Animales , Western Blotting , Neoplasias Encefálicas/irrigación sanguínea , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Ensayo de Inmunoadsorción Enzimática , Femenino , Glioma/irrigación sanguínea , Glioma/patología , Inmunohistoquímica , Microscopía Electrónica de Transmisión , Inhibidores de Fosfodiesterasa/farmacología , Pinocitosis/efectos de los fármacos , Radioinmunoensayo , Ratas , Ratas Wistar , Uniones Estrechas/efectos de los fármacos , Uniones Estrechas/ultraestructura
16.
Med Sci Monit ; 20: 2571-7, 2014 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-25481483

RESUMEN

BACKGROUND: The aim of this study was to determine whether miR-210 can affect the apoptosis and proliferation of human U251 glioma cells from down-regulating SIN3A. MATERIAL AND METHODS: The expression of miRNA-210 was detected by quantitative real-time PCR in normal brain tissue and glioma samples. The apoptosis and proliferation ability of U251 cells were analyzed by MTT and flow cytometry assay after anti-miR-210 transfection. For the regulation mechanism analysis of miR-210, TargetScan, PicTar, and microRNA were selected to predict some potential target genes of miR-210. The predicted gene was identified to be the direct and specific target gene of miR-210 by luciferase activities assay and Western blot. RNA interference technology was used to confirm that the apoptosis and proliferation effects of miR-210 were directly induced by SIN3A. RESULTS: The expression of miR-210 increased significantly in glioma in comparison with normal brain tissue. The silence of miR-210 expression could inhibit the proliferation of U251 cells and induce the apoptosis. Mechanism analysis revealed that SIN3A was a specific and direct target gene of miR-210. The siRNA-SIN3A could down-regulate the expression of SIN3A protein, which was up-regulated in U251 cells by anti-miR-210 transfection, and our experiments found that silence of SIN3A could inhibit the apoptosis and sharply increase the proliferation of U251 cells. The regulation effects of anti-miR-210 on apoptosis and proliferation can be reversed respectively by the expression silence of SIN3A. CONCLUSIONS: Aberrantly expressed miR-210 regulates human U251 glioma cells apoptosis and proliferation partly through directly down-regulating SIN3A protein expression. This might offer a new potential therapeutic stratagem for glioma.


Asunto(s)
Apoptosis/genética , Neoplasias Encefálicas/genética , Glioma/genética , Glioma/patología , MicroARNs/genética , Proteínas Represoras/metabolismo , Regulación hacia Arriba/genética , Regiones no Traducidas 3'/genética , Anciano , Secuencia de Bases , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , MicroARNs/metabolismo , Persona de Mediana Edad , Datos de Secuencia Molecular , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Represoras/genética , Complejo Correpresor Histona Desacetilasa y Sin3
17.
Neural Regen Res ; 17(1): 170-177, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34100453

RESUMEN

Ghrelin is a neuropeptide that has various physiological functions and has been demonstrated to be neuroprotective in a number of neurological disease models. However, the underlying mechanisms of ghrelin in Parkinson's disease remain largely unexplored. The current study aimed to study the effects of ghrelin in a 6-hydroxydopamine (6-OHDA)-induced Parkinson's disease model and evaluate the potential underlying mechanisms. In the present study, we treated an SH-SY5Y cell model with 6-OHDA, and observed that pretreatment with different concentrations of ghrelin (1, 10, and 100 nM) for 30 minutes relieved the neurotoxic effects of 6-OHDA, as revealed by Cell Counting Kit-8 and Annexin V/propidium iodide (PI) apoptosis assays. Reverse transcription quantitative polymerase chain reaction and western blot assay results demonstrated that 6-OHDA treatment upregulated α-synuclein and lincRNA-p21 and downregulated TG-interacting factor 1 (TGIF1), which was predicted as a potential transcription regulator of the gene encoding α-synuclein (SNCA). Ghrelin pretreatment was able to reverse the trends caused by 6-OHDA. The Annexin V/PI apoptosis assay results revealed that inhibiting either α-synuclein or lincRNA-p21 expression with small interfering RNA (siRNA) relieved 6-OHDA-induced cell apoptosis. Furthermore, inhibiting lincRNA-p21 also partially upregulated TGIF1. By retrieving information from a bioinformatics database and performing both double luciferase and RNA immunoprecipitation assays, we found that lincRNA-p21 and TGIF1 were able to form a double-stranded RNA-binding protein Staufen homolog 1 (STAU1) binding site and further activate the STAU1-mediated mRNA decay pathway. In addition, TGIF1 was able to transcriptionally regulate α-synuclein expression by binding to the promoter of SNCA. The Annexin V/PI apoptosis assay results showed that either knockdown of TGIF1 or overexpression of lincRNA-p21 notably abolished the neuroprotective effects of ghrelin against 6-OHDA-induced neurotoxicity. Collectively, these findings suggest that ghrelin exerts neuroprotective effects against 6-OHDA-induced neurotoxicity via the lincRNA-p21/TGIF1/α-synuclein pathway.

18.
Cell Mol Neurobiol ; 31(4): 629-34, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21331626

RESUMEN

This study was performed to determine whether minoxidil sulfate (MS), a selective Adenosine 5'-triphosphate-sensitive potassium channel (K (ATP) channel) activator, has an effect on the expression of caveolin-1 in the rat's brain tumor tissue. Using a rat brain glioma (C6) model, we found that the expression of caveolin-1 protein at tumor sites was greatly increased after intracarotid infusion of MS at a dose of 30 µg/kg/min for 15, 30, and 60 min via Western blot analysis. And the peak value of the caveolin-1 expression was observed in rats with glioma after 15 min of MS perfusion, which was significantly attenuated by reactive oxygen species (ROS) scavenger (N-2-mercaptopropionyl glycine, MPG). In addition, MPG also significantly inhibited the increase of blood-brain tumor barrier (BTB) permeability which was induced by MS. This led to the conclusion that the MS-induced BTB permeability increase may be related to the accelerated formation of caveolin-1 protein, and could be mediated by ROS.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Caveolina 1/metabolismo , Glioma/metabolismo , Canales KATP/metabolismo , Minoxidil/análogos & derivados , Regulación hacia Arriba/efectos de los fármacos , Animales , Barrera Hematoencefálica/efectos de los fármacos , Neoplasias Encefálicas/irrigación sanguínea , Neoplasias Encefálicas/patología , Capilares/efectos de los fármacos , Capilares/metabolismo , Modelos Animales de Enfermedad , Azul de Evans/metabolismo , Glioma/irrigación sanguínea , Glioma/patología , Minoxidil/farmacología , Permeabilidad/efectos de los fármacos , Ratas , Ratas Wistar , Tiopronina/farmacología
19.
J Neurooncol ; 102(2): 213-24, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20683758

RESUMEN

This study was performed to determine whether low frequency ultrasound (LFU) irradiation, Papaverine (PA) infusion and combination LFU irradiation with PA infusion opened the blood-tumor barrier (BTB) by affecting tight junctions (TJ)-associated proteins zonula occluden-1 (ZO-1), occludin and caludin-5. In a rat brain glioma model, we found that the mRNA and protein expression levels of ZO-1, occludin and claudin-5 were decreased by LFU irradiation and PA infusion. LFU-induced and PA-induced decrease of ZO-1, occludin and claudin-5 was further decreased after combining LFU irradiation with PA infusion. Immunohistochemistry assay showed that the decreased expression of ZO-1, occludin and claudin-5 was the most obvious in the tumor capillaries. Meanwhile, Evans blue assay showed that the permeability of BTB was increased, and transmission electron microscopy (TEM) indicated that TJ was opened. This led to the conclusion that LFU irradiation and PA infusion together can open the BTB by paracellular pathway. Significantly down-regulated expression levels of ZO-1, occludin and claudin-5 might be one of the molecular mechanisms of combining LFU and PA enhancing the permeability of BTB.


Asunto(s)
Barrera Hematoencefálica/efectos de los fármacos , Neoplasias Encefálicas/irrigación sanguínea , Permeabilidad Capilar/fisiología , Glioma/irrigación sanguínea , Papaverina/uso terapéutico , Terapia por Ultrasonido , Animales , Western Blotting , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/terapia , Claudina-5 , Terapia Combinada , Modelos Animales de Enfermedad , Regulación hacia Abajo , Femenino , Glioma/metabolismo , Glioma/terapia , Técnicas para Inmunoenzimas , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Microscopía Electrónica de Transmisión , Ocludina , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Uniones Estrechas , Proteína de la Zonula Occludens-1
20.
Front Psychol ; 12: 747719, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35002844

RESUMEN

To solve the problem that lack of interaction in online courses affects motivation and effectiveness of students' learning, smart interactive tools were introduced into the online Neurobiology course. This study aimed to evaluate the students' satisfaction with online teaching mode and assess the academically higher and lower performing students' learning effectiveness in the online course optimized with smart interactive tools compared to face-to-face learning. Descriptive statistics and independent t-tests were used to describe student samples and determine the differences in students' satisfaction and performance. Reflections of students' satisfaction revealed that about 65.8% were satisfied with the learning involvement and about 60.5% were satisfied with the class interaction. Almost two-thirds of the class agreed that the smart interactive tools applied in the online course could help them attain their learning goals better. Among all the smart interactive functions, the class quiz was the most effective one in helping students grasp the main points of the course. No significant differences were found between the two teaching modes in the overall and academically higher or lower performing students' final exam average scores. Compared to each band score of such two teaching modes, no one failed to pass the final exam in the online course, however, three lower-performing students who were taught in the traditional course failed. This study suggested that optimized online teaching with smart interactive tools could produce the same learning effectiveness for the academically lower-performing students as for the higher-performing students. Meanwhile, the instructors could know the learning status in which each student was and perform personalized guidance and improve exam passing rate accordingly.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA