RESUMEN
We recently showed that riboflavin is a selected substrate of breast cancer resistance protein (BCRP) over P-glycoprotein (P-gp) and demonstrated its prediction performance in preclinical drug-drug interaction (DDI) studies. The aim of this study was to investigate the suitability of riboflavin to assess BCRP inhibition in humans. First, we assessed the substrate potential of riboflavin toward other major drug transporters using established transfected cell systems. Riboflavin is a substrate for organic anion transporter (OAT)1, OAT3, and multidrug and toxin extrusion protein (MATE)2-K, with uptake ratios ranging from 2.69 to 11.6, but riboflavin is not a substrate of organic anion-transporting polypeptide (OATP)1B1, OATP1B3, organic cation transporter (OCT)2, and MATE1. The effects of BMS-986371, a potent in vitro inhibitor of BCRP (IC 50 0.40 µM), on the pharmacokinetics of riboflavin, isobutyryl carnitine, and arginine were then examined in healthy male adults (N = 14 or 16) after oral administration of methotrexate (MTX) (7.5 mg) and enteric-coated (EC) sulfasalazine (SSZ) (1000 mg) alone or in combination with BMS-986371 (150 mg). Oral administration of BMS-986371 increased the area under the plasma concentration-time curves (AUCs) of rosuvastatin and immediate-release (IR) SSZ to 1.38- and 1.51-fold, respectively, and significantly increased AUC(0-4h), AUC(0-24h), and C max of riboflavin by 1.25-, 1.14-, and 1.11-fold (P-values of 0.003, 0.009, and 0.025, respectively) compared with the MTX/SSZ EC alone group. In contrast, BMS-986371 did not significantly influence the AUC(0-24h) and C max values of isobutyryl carnitine and arginine (0.96- to 1.07-fold, respectively; P > 0.05). Overall, these data indicate that plasma riboflavin is a promising biomarker of BCRP that may offer a possibility to assess drug candidate as a BCRP modulator in early drug development. SIGNIFICANCE STATEMENT: Endogenous compounds that serve as biomarkers for clinical inhibition of breast cancer resistance protein (BCRP) are not currently available. This study provides the initial evidence that riboflavin is a promising BCRP biomarker in humans. For the first time, the value of leveraging the substrate of BCRP with acceptable prediction performance in clinical studies is shown. Additional clinical investigations with known BCRP inhibitors are needed to fully validate and showcase the utility of this biomarker.
Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Proteínas de Neoplasias , Riboflavina , Humanos , Riboflavina/farmacocinética , Riboflavina/metabolismo , Riboflavina/sangre , Proyectos Piloto , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/antagonistas & inhibidores , Adulto , Masculino , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/antagonistas & inhibidores , Biomarcadores/sangre , Biomarcadores/metabolismo , Voluntarios Sanos , Adulto Joven , Metotrexato/farmacocinética , Metotrexato/farmacología , Metotrexato/metabolismo , Metotrexato/sangre , Persona de Mediana EdadRESUMEN
4ß-Hydroxycholesterol (4ß-HC) in plasma has been used as a biomarker to assess CYP3A drug-drug interaction (DDI) potential during drug development. However, due to the long half-life and narrow dynamic range of 4ß-HC, its use has been limited to the identification of CYP3A inducers, but not CYP3A inhibitors. The formation of 1ß-hydroxydeoxycholic acid (1ß-OH DCA) from deoxycholic acid (DCA) is mediated by CYP3A, thus 1ß-OH DCA can potentially serve as an alternative to 4ß-HC for assessment of CYP3A DDI potential. To study this feasibility, we developed a sensitive liquid chromatography-tandem mass spectrometry method for the simultaneous quantitation of 1ß-OH DCA and its glycine and taurine conjugates in human plasma with the lower limit of quantitation of 50 pg/ml, which enabled the quantitation of basal levels and further reduction. The method was applied to a DDI study to assess how 1ß-OH DCA and its glycine and taurine conjugates would respond to CYP3A induction or inhibition. Rifampin induction resulted in an increase of 1ß-OH DCA and its conjugates in plasma, with 6.8-, 7.8-, 8.3-, and 10.3-fold increases of area under the curve from the time of dosing to the last measurable concentration (AUCLST), area under the curve from the time of dosing to 24 hours (AUC24h), C max, and mean concentrations for total 1ß-OH DCA (total of all three forms), respectively. Importantly, inhibition with itraconazole resulted in notable reduction of these biomarkers, with 84%, 85%, 82%, and 81% reductions of AUCLST, AUC24h, C max, and mean concentrations for total 1ß-OH DCA, respectively. These preliminary data demonstrate for the first time that total 1ß-OH DCA in plasma has the potential to serve as a biomarker for CYP3A DDI assessment in early clinical development and may provide key advantages over 4ß-HC. SIGNIFICANCE STATEMENT: The authors have reported the use of total 1ß-hydroxydeoxycholic acid (1ß-OH DCA) (sum of 1ß-OH DCA and its glycine and taurine conjugates) plasma exposure as a biomarker for CYP3A activity. Itraconazole inhibition led to an 81%-85% decrease of total 1ß-OH DCA plasma exposures, whereas rifampin induction led to a 6.8- to 10.3-fold increase of total 1ß-OH DCA plasma exposures. Using 1ß-OH DCA exposures in plasma also provides the benefit of allowing pharmacokinetic and biomarker assessment using the same matrix.
Asunto(s)
Biomarcadores , Inductores del Citocromo P-450 CYP3A , Citocromo P-450 CYP3A , Ácido Desoxicólico , Interacciones Farmacológicas , Hidroxicolesteroles , Humanos , Citocromo P-450 CYP3A/metabolismo , Biomarcadores/sangre , Ácido Desoxicólico/sangre , Inductores del Citocromo P-450 CYP3A/farmacología , Hidroxicolesteroles/sangre , Espectrometría de Masas en Tándem/métodos , Masculino , Adulto , Rifampin/farmacología , Rifampin/sangre , Inhibidores del Citocromo P-450 CYP3A/farmacología , Inhibidores del Citocromo P-450 CYP3A/farmacocinética , Cromatografía Liquida/métodos , Taurina/sangre , Taurina/análogos & derivadosRESUMEN
Polyelectrolyte-based ionic-junction fibers newly serve as signal transmission and translation media between electronic devices and biological systems, facilitating ion transport within organic matrices. In this work, we fabricated gel filaments of carboxymethyl cellulose (CMC) chelated with Cu(II) ions through wet-spinning, using a saturated coagulant of CuSO4. Interestingly, the as-spun fibers exhibited dramatic 3D porous frameworks that varied with the temperature and precursor concentration. At 20 °C, the Cu(II) chelation networks favored the formation of well-organized cellular chambers or corrugated channels, displaying dense stacking patterns. However, critical transitions from cellular chambers to corrugated channels occurred at precursor dope concentrations of approximately 2 and 7 wt %, with the porous structure diminishing beyond 8 wt %. We have proposed schematic diagrams to mimic the 3D pore structure, dense porous stacking, and formation mechanism, according to electronic micrographs. Our investigations revealed that the distinct ion-junction channels or chambers are under the control of axial drawing extension as well as the outside-inside penetration of Cu(II) ions into the dope and inside-outside diffusion of water into coagulants. Therefore, controlling the metal chelation-water diffusion process at specific temperatures and concentrations will offer valuable insights for tailoring ionic-junction soft filaments with gradient hierarchically porous structures and shape memory properties.
Asunto(s)
Carboximetilcelulosa de Sodio , Sulfato de Cobre , Carboximetilcelulosa de Sodio/química , Porosidad , Sulfato de Cobre/química , Cobre/químicaRESUMEN
Advancement of endogenous biomarkers for drug transporters as a tool for assessing drug-drug interactions (DDIs) depends on initial identification of biomarker candidates and relies heavily on biomarker validation and its response to reference inhibitors in vivo. To identify endogenous biomarkers of breast cancer resistance protein (BCRP), we applied metabolomic approaches to profile plasma from Bcrp-/-, multidrug resistance protein (Mdr)1a/1b-/-, and Bcrp/Mdr1a/1b-/- mice. Approximately 130 metabolites were significantly altered in Bcrp and P-glycoprotein (P-gp) knockout mice, indicating numerous metabolite-transporter interactions. We focused on BCRP-specific substrates and identified riboflavin, which was significantly elevated in the plasma of Bcrp single- and Bcrp/P-gp double- but not P-gp single-knockout mice. Dual BCRP/P-gp inhibitor elacridar caused a dose-dependent increase of the area under the plasma concentration-time curve (AUC) of riboflavin in mice (1.51- and 1.93-fold increases by 30 and 150 mg/kg elacridar, respectively). In three cynomolgus monkeys, we observed approximately 1.7-fold increases in the riboflavin concentrations caused by ML753286 (10 mg/kg), which correlated well with the increase of sulfasalazine, a known BCRP probe in monkeys. However, the BCRP inhibitor had no effect on isobutyryl carnitine, arginine, or 2-arachidonoyl glycerol levels. Additionally, clinical studies on healthy volunteers indicated low intrasubject and intermeal variability of plasma riboflavin concentrations. In vitro experiments using membrane vesicles demonstrated riboflavin as a select substrate of monkey and human BCRP over P-gp. Collectively, this proof-of-principle study indicates that riboflavin is a suitable endogenous probe for BCRP activity in mice and monkeys and that future investigation of riboflavin as a blood-based biomarker of human BCRP is warranted. SIGNIFICANCE STATEMENT: Our results identified riboflavin as an endogenous biomarker candidate of BCRP. Its selectivity, sensitivity, and predictivity regarding BCRP inhibition have been explored. The findings of this study highlight riboflavin as an informative BCRP plasma biomarker in animal models. The utility of this biomarker requires further validation by evaluating the effects of BCRP inhibitors of different potencies on riboflavin plasma concentrations in humans. Ultimately, riboflavin may shed light on the risk assessment of BCRP DDIs in early clinical trials.
Asunto(s)
Encéfalo , Neoplasias de la Mama , Humanos , Ratones , Animales , Femenino , Encéfalo/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de Neoplasias/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Ratones Noqueados , Biomarcadores/metabolismo , Interacciones Farmacológicas , Neoplasias de la Mama/metabolismoRESUMEN
Negatively surface-charged sulfate cellulose nanocrystals (CNCs) are always slowly self-assembled into left-handed cholesteric mesophases. In this work, macroscopic spiral patterns induced by counterclockwise vortex flowing or chiral doping were investigated. Results show that iridescent patterns of the arithmetic spiral, rose spiral, or latitude ripples were generated under the vortex rotation, indicating a severe microphase separation of CNCs. Moreover, the spiral pattern and rotational symmetry were highly correlated to the twisting and flowability of CNCs as well as chiral dopants. Alternatively, the cholesteric pitch and maximum reflective wavelength (λmax) of CNCs were strongly increased by sinistral dopants other than the dextral ones, indicating an enhanced torsion of left-handed CNC mesophases by the dextral dopants. In addition, macroscopic spiral patterns distinctly existed in dextrally doped CNCs owing to a synergistic chiral enhancement. Therefore, the mechanochiral or chemical chiral transition from microscopic twisting to macroscopic spiral provides a potential inspiration for chiral self-organization of biological macromolecules.
Asunto(s)
Celulosa , Nanopartículas , Celulosa/química , Nanopartículas/químicaRESUMEN
AIMS: A parent-metabolite population pharmacokinetic (popPK) model of iberdomide and its pharmacologically active metabolite (M12) was developed and the influence of demographic and disease-related covariates on popPK parameters was assessed based on data from 3 clinical studies of iberdomide (dose range, 0.1-6 mg) in healthy subjects (n = 81) and patients with relapsed and refractory multiple myeloma (n 245). METHODS: Nonlinear mixed effects modelling was used to develop the popPK model based on data from 326 subjects across 3 clinical studies. RESULTS: The pharmacokinetics (PK) of iberdomide were adequately described with a 2-compartment model with first-order absorption and elimination. A first-order conversion rate was used to link the 1-compartment linear elimination metabolite model with the parent model. Subject type (multiple myeloma patients vs. healthy subject) was a statistically significant covariate on apparent clearance and apparent volume of distribution for the central compartment, suggesting different PK between patients with multiple myeloma and healthy subjects. Aspartate aminotransferase and sex were statistically but not clinically relevant covariates on apparent clearance. Metabolite (M12) PK tracked the PK of iberdomide. The metabolite to parent ratio was consistent across doses and combinations. CONCLUSION: The parent-metabolite population PK model adequately described the time course PK data of iberdomide and M12. Iberdomide and M12 PK exposure were not complicated by demographic factors (age [19-82 y], body weight [41-172 kg], body surface area [1.4-2.7 m2 ], body mass index [16.4-59.3 kg/m2 ]), combination (in combination with dexamethasone and daratumumab), mild hepatic, or mild and moderate renal impairments. The model can be used to guide the dosing strategy for special patient population and inform future iberdomide study design.
Asunto(s)
Mieloma Múltiple , Humanos , Voluntarios Sanos , Índice de Masa Corporal , Peso Corporal , Modelos BiológicosRESUMEN
PURPOSE: The differences between intestinal and systemic (hepatic and renal) P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) roles in drug disposition are difficult to define. Accordingly, we characterized Encequidar (ECD) as an intestinal P-gp and BCRP specific inhibitor to evaluate their role in drug disposition. METHODS: We assessed the in vitro and in vivo inhibition potential of ECD towards human and animal P-gp and BCRP. RESULTS: ECD is a potent inhibitor with a high degree of selectivity in inhibiting human P-gp (hP-gp) over human BCRP (hBCRP) (IC50s of 0.0058 ± 0.0006 vs. > 10 µM, respectively). In contrast, ECD is a potent inhibitor of rat and cynomolgus monkey BCRP (IC50 ranged from 0.059 to 0.18 µM). While the AUC of IV paclitaxel (PTX) was significantly increased by elacridar (ELD) (P < 0.05) but not ECD in rats (15 mg/kg; PO) (2.55- vs. 0.93-fold), that of PO PTX was significantly elevated to a similar extent between the inhibitors (39.5- vs. 33.5-fold). Similarly, the AUC of PO sulfasalazine (SFZ) was dramatically increased by ELD and ECD (16.6- vs. 3.04-fold) although that of IV SFZ was not significantly affected by ELD and ECD in rats (1.18- vs. 1.06-fold). Finally, a comparable ECD-induced increase of the AUC of PO talinolol in cynomolgus monkeys was observed compared with ELD (2.14- vs. 2.12-fold). CONCLUSIONS: ECD may allow an in-depth appraisal of the role of intestinal efflux transporter(s) in drug disposition in animals and humans through local intestinal drug interactions.
Asunto(s)
Transportadoras de Casetes de Unión a ATP , Proteínas de Neoplasias , Humanos , Ratas , Animales , Transportadoras de Casetes de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Macaca fascicularis/metabolismo , Proteínas de Neoplasias/metabolismo , Paclitaxel , Interacciones FarmacológicasRESUMEN
WHAT IS KNOWN AND OBJECTIVE: CC-292 is a potent, selective, orally administered small molecule inhibitor of bruton tyrosine kinase (BTK). The aim of this study was to evaluate the relative bioavailability of newly developed CC-292 tablet formulation (P22 tablet (P22-TAB) and CC-292 capsule formulation (P22 capsule [P22-CAP]) compared to the current CC-292 capsule formulation (P1 capsule [P01-CAP]). METHODS: This was an open-label, randomized, three-period, crossover study in healthy subjects (N = 12). Blood samples for pharmacokinetics (PK) assessment were collected up to 48 h postdose during each treatment period. Safety was evaluated throughout the study. RESULTS AND DISCUSSION: For all three formulations, following administration of CC-292 at a dose level of 250 mg under fasted conditions, CC-292 was rapidly absorbed with maximum plasma concentrations (Cmax) occurring at a median of 1.5-1.75 h (Tmax). P22-CAP formulation showed a similar range of Tmax compared to P01-CAP and P22-TAB showed a wider range of Tmax compared to P01-CAP. Comparable or higher Cmax and AUC0-∞ were noted for P22-TAB and P22-CAP formulations as compared to P01-CAP formulation. The relative bioavailability (Frel) of the CC-292 P22-TAB compared to the P01-CAP reference formulation was 1.02, and the relative bioavailability (Frel) of the CC-292 P22-CAP compared to the P01-CAP reference formulation was 1.23. In conclusion, CC-292 was well tolerated when administered as single 250-mg oral doses of P22-TAB, P22-CAP or P01-CAP in the fasted state in this group of healthy subjects. Given that CC-292 has shown favourable safety profiles in the current clinical settings, the new formulations (P22-TAB and P22-CAP) are similar as the reference formulation (P01-CAP).
Asunto(s)
Disponibilidad Biológica , Acrilamidas , Administración Oral , Agammaglobulinemia Tirosina Quinasa , Área Bajo la Curva , Estudios Cruzados , Humanos , Pirimidinas , Comprimidos , Equivalencia TerapéuticaRESUMEN
PURPOSE: Iberdomide is a cereblon E3 ligase modulator capable of redirecting the protein degradation machinery of the cell towards the elimination of target proteins potentially driving therapeutic effects. In vitro studies demonstrated that iberdomide predominantly undergoes oxidative metabolism mediated by cytochrome P450 (CYP) 3A4/5 but had no notable inhibition or induction of CYP enzymes. Consequently, the potential of iberdomide as a victim of drug-drug interactions (DDI) was evaluated in a clinical study with healthy subjects. METHODS: A total of 33 males and 5 females with 19 subjects per part were enrolled. Part 1 evaluated the pharmacokinetics (PK) of iberdomide alone (0.6 mg) and when administered with the CYP3A and P-gp inhibitor itraconazole (200 mg twice daily on day 1 and 200 once daily on days 2 through 9). Part 2 evaluated the PK of iberdomide alone (0.6 mg) and with CYP3A4 inducer rifampin (600 mg QD days 1 through 13). Plasma concentrations of iberdomide and the active metabolite M12 were determined by validated liquid chromatography-tandem mass spectrometry assay. RESULTS: Coadministration of iberdomide with itraconazole increased iberdomide peak plasma concentration (Cmax) 17% and area under the concentration curve (AUC) approximately 2.4-fold relative to administration of iberdomide alone. The Cmax and AUC of iberdomide were reduced by approximately 70% and 82%, respectively, when iberdomide was administered with rifampin compared with iberdomide administered alone. Exploratory assessment of metabolite M12 concentrations demonstrated that CYP3A is responsible for M12 formation. CONCLUSIONS: Caution should be taken when coadministering iberdomide with strong CYP3A inhibitors. Coadministration of iberdomide with strong CYP3A inducers is not advised. CLINICAL TRIAL REGISTRATION: Clinical trial identification number is NCT02820935 and was registered in July 2016.
Asunto(s)
Inductores del Citocromo P-450 CYP3A/farmacocinética , Inhibidores del Citocromo P-450 CYP3A/farmacocinética , Compuestos Heterocíclicos de 4 o más Anillos/farmacocinética , Factores Inmunológicos/farmacocinética , Adulto , Área Bajo la Curva , Citocromo P-450 CYP3A/metabolismo , Inductores del Citocromo P-450 CYP3A/administración & dosificación , Inhibidores del Citocromo P-450 CYP3A/administración & dosificación , Interacciones Farmacológicas , Femenino , Voluntarios Sanos , Compuestos Heterocíclicos de 4 o más Anillos/administración & dosificación , Humanos , Factores Inmunológicos/administración & dosificación , Itraconazol/administración & dosificación , Itraconazol/farmacocinética , Lupus Eritematoso Sistémico/tratamiento farmacológico , Lupus Eritematoso Sistémico/inmunología , Masculino , Microsomas Hepáticos , Persona de Mediana Edad , Morfolinas , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/inmunología , Ftalimidas , Piperidonas , Rifampin/administración & dosificación , Rifampin/farmacocinética , Adulto JovenRESUMEN
Biological polysaccharides such as cellulose, chitin, chitosan, sodium alginate, etc., serve as excellent substrates for 3D printing due to their inherent advantages of biocompatibility, biodegradability, non-toxicity, and absence of secondary pollution. In this review we comprehensively overviewed the principles and processes involved in 3D printing of polysaccharides. We then delved into the diverse application of 3D printed polysaccharides in wastewater treatment, including their roles as adsorbents, photocatalysts, biological carriers, micro-devices, and solar evaporators. Furthermore, we assessed the technical superiority and future potential of polysaccharide 3D prints, envisioning its widespread application. Lastly, we remarked the challenging scientific and engineering aspects that require attention in the scientific research, industrial production, and engineering utilization. By addressing these key points, we aimed to advance the field and facilitate the practical implementation of polysaccharide-based 3D printing technologies in wastewater treatment and beyond.
Asunto(s)
Celulosa , Polisacáridos , Alginatos , Quitina , Impresión TridimensionalRESUMEN
Fedratinib is an oral Janus kinase 2-selective inhibitor for the treatment of adult patients with intermediate-2 or high-risk myelofibrosis; however, some patients have difficulty with oral dosing. This randomized, phase 1, open-label, 2-part crossover study evaluated the relative bioavailability, safety, tolerability, taste, and palatability of fedratinib resulting from various alternative oral administration methods in healthy adults. Participants could receive fedratinib 400 mg orally as intact capsules along with a nutritional supplement; as contents of capsules dispersed in a nutritional supplement, delivered via nasogastric tube; or as a divided dose of 200 mg orally twice daily as intact capsules with a nutritional supplement. Fifty-eight participants received treatment. Total exposure to fedratinib was similar after oral administration of intact capsules or when dispersed in a nutritional supplement (area under the plasma concentration-time curve from time 0 to the time of the last quantifiable concentration geometric mean ratio [AUC0-t GMR] [90% CI], 1.007 [0.929-1.092]). Total exposure to fedratinib was slightly reduced following nasogastric administration (AUC0-t GMR 0.850 [0.802-0.901]) and as a divided dose (AUC0-t GMR 0.836 [0.789-0.886]). No new safety signals were identified for fedratinib, and most participants found the taste and palatability acceptable when dispersed in a nutritional supplement. Overall, results suggest no clinically meaningful differences in total exposure to fedratinib between the tested oral administration methods. These findings may facilitate administration of fedratinib to patients who are intolerant of swallowing the capsule dosage form. (ClinicalTrials.gov: NCT05051553).
Asunto(s)
Disponibilidad Biológica , Adulto , Humanos , Estudios Cruzados , Administración Oral , Área Bajo la CurvaRESUMEN
The 17th Workshop on Recent Issues in Bioanalysis (17th WRIB) took place in Orlando, FL, USA on June 19-23, 2023. Over 1000 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 17th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week to allow an exhaustive and thorough coverage of all major issues in bioanalysis of biomarkers, immunogenicity, gene therapy, cell therapy and vaccines.Moreover, in-depth workshops on "EU IVDR 2017/746 Implementation and impact for the Global Biomarker Community: How to Comply with this NEW Regulation" and on "US FDA/OSIS Remote Regulatory Assessments (RRAs)" were the special features of the 17th edition.As in previous years, WRIB continued to gather a wide diversity of international, industry opinion leaders and regulatory authority experts working on both small and large molecules as well as gene, cell therapies and vaccines to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance, and achieving scientific excellence on bioanalytical issues.This 2023 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2023 edition of this comprehensive White Paper has been divided into three parts for editorial reasons.This publication covers the recommendations on Mass Spectrometry Assays, Regulated Bioanalysis/BMV (Part 1A) and Regulatory Inputs (Part 1B). Part 2 (Biomarkers, IVD/CDx, LBA and Cell-Based Assays) and Part 3 (Gene Therapy, Cell therapy, Vaccines and Biotherapeutics Immunogenicity) are published in volume 16 of Bioanalysis, issues 7 and 8 (2024), respectively.
Asunto(s)
Biomarcadores , Tratamiento Basado en Trasplante de Células y Tejidos , Proteómica , Humanos , Biomarcadores/análisis , Cromatografía/métodos , Terapia Genética , Espectrometría de Masas/métodos , Proteómica/métodosRESUMEN
Pharmacologic induction of fetal hemoglobin (HbF) expression is an effective treatment strategy for sickle cell disease (SCD) and ß-thalassemia. Pomalidomide is a potent structural analog of thalidomide and member of a new class of immunomodulatory drugs. Recent reports demonstrated that pomalidomide reduced or eliminated transfusion requirements in certain hematologic malignancies and induced HbF ex vivo in CD34(+) progenitor cells from healthy and SCD donors. We investigated the effects of pomalidomide on erythropoiesis and hemoglobin synthesis in a transgenic mouse model of SCD. We found that 8 weeks of treatment with pomalidomide induced modest increases of HbF with similar efficacy as hydroxyurea. However, in stark contrast to hydroxyurea's myelosuppressive effects, pomalidomide augmented erythropoiesis and preserved bone marrow function. Surprisingly, combinatory therapy with both drugs failed to mitigate hydroxyurea's myelotoxic effects and caused loss of HbF induction. These findings support further evaluation of pomalidomide as a novel therapy for SCD.
Asunto(s)
Anemia de Células Falciformes/sangre , Antidrepanocíticos/farmacología , Médula Ósea/efectos de los fármacos , Eritropoyesis/efectos de los fármacos , Hemoglobina Fetal/efectos de los fármacos , Talidomida/análogos & derivados , Animales , Modelos Animales de Enfermedad , Hidroxiurea/efectos adversos , Ratones , Ratones Noqueados , Ratones Transgénicos , Talidomida/farmacologíaRESUMEN
There is growing evidence for the potential of biochars (BCs) in remediating mercury-contaminated paddy soils, but the high doses commonly used in laboratory studies discourage BC application in practice. To address these difficulties, we compared the effects of varying amounts of BCs from different sources on the formation of methylmercury (MeHg) in soil and its accumulation in rice through microcosm and pot experiments. The addition of a wide range of added doses (0.3, 0.6, 1, 2, 4 and 5 %, w/w) of BCs derived from different biomass feedstocks (i.e., corn stalk, wheat straw, bamboo, oak and poplar) significantly decreased the fraction of ammonium thiosulfate ((NH4)2S2O3)-extractable MeHg in the soil, although the MeHg contents varied with BC types and doses during soil incubation. However, the extractable MeHg in the soil did not continuously decrease with increasing BC doses, especially at doses of >1 %, resulting in limited further reductions. Moreover, a relatively low application rate (0.3-0.6 %, w/w) of BCs (i.e., corn stalk, wheat straw and bamboo-derived BC), especially of bamboo-derived BCs, significantly decreased the MeHg levels (42-76 %) in rice grains (brown rice). Meanwhile, the extractable soil MeHg decreased (57-85 %), although the MeHg in the soil varied under BC amendment during rice cultivation. These results provide further evidence that applying BC produced from different raw carbon materials (e.g., lignocellulosic biomass) could effectively reduce MeHg accumulation in rice grains, possibly due to MeHg bioavailability reduction in the soil. Our results suggest the possibility of mitigating MeHg accumulation in rice with a low dose of BCs, with great potential for use in remediating moderately contaminated paddy soils.
Asunto(s)
Mercurio , Compuestos de Metilmercurio , Oryza , Contaminantes del Suelo , Mercurio/análisis , Suelo , Metilación , Contaminantes del Suelo/análisis , TriticumRESUMEN
Introduction: Iberdomide, a novel cereblon modulator (CELMoD®), is currently under clinical investigation for hematology indications. To evaluate the influence of hepatic impairment on the pharmacokinetics (PK) of iberdomide and its major active metabolite M12, a phase 1, multicenter, open-label study was conducted in healthy subjects and subjects with mild, moderate, and severe hepatic impairment. Methods: Forty subjects were enrolled in the study and divided into five groups based on hepatic function. 1 mg iberdomide was administered and plasma samples were collected to evaluate the pharmacokinetics of iberdomide and M12. Results: After a single dose of iberdomide (1 mg), mean iberdomide Cmax (maximum observed concentration) and AUC (area under the concentration-time curve) exposure were generally comparable between hepatic impairment (HI) subjects (severe, moderate and mild) and their respective matched normal controls. Mean Cmax and AUC exposure of the metabolite M12 were generally comparable between mild HI and matched normal subjects. However, mean Cmax of the M12 was 30% and 65% lower and AUC was 57% and 63% lower in moderate and severe HI subjects as compared to their respective matched normal controls. However, given the relatively low M12 exposure as compared to its parent drug, the observed differences were not considered clinically meaningful. Conclusion: In summary, 1 mg single oral dose of iberdomide was generally well-tolerated. HI (mild, moderate or severe) had no clinically relevant impact on iberdomide PK and therefore, no dose adjustment is warranted.
RESUMEN
Iberdomide is an orally available cereblon-modulating agent being developed for the treatment of hematologic malignancies and autoimmune-mediated diseases. To assess the potential concentration-QTc relationship in humans and to ascertain or exclude a potential QT effect by iberdomide, a plasma concentration and ΔQTcF (change from baseline of corrected QT interval using the Fridericia formula) model of iberdomide was developed. Iberdomide concentration and paired high-quality, intensive electrocardiogram signal from a single-ascending-dose study in healthy subjects (N = 56) were included in the analysis. The primary analysis was based on a linear mixed-effect model with ΔQTcF as the dependent variable; iberdomide plasma concentration and baseline QTcF as continuous covariates; treatment (active or placebo) and time as a categorical factor; and a random intercept per subject. The predicted change from baseline and placebo corrected (ΔΔQTcF) at the observed geometric mean maximum plasma concentration and 2-sided 90% confidence intervals at different dose levels were calculated. The upper bound of the 90% confidence interval of the model-predicted ΔΔQTcF effect at maximum concentration from the supratherapeutic dose of 6 mg (2.54 milliseconds) is <10-millisecond threshold, suggesting that iberdomide does not have a clinically relevant QT prolongation liability.
Asunto(s)
Fluoroquinolonas , Humanos , Moxifloxacino/farmacología , Fluoroquinolonas/farmacología , Método Doble Ciego , Frecuencia Cardíaca , Relación Dosis-Respuesta a DrogaRESUMEN
Botrytis cinerea is a devastating pathogen causing gray mold in fruits and vegetables if not properly managed. Although the mechanisms remain unclear, we previously revealed that the safe food additive calcium propionate (CP) could suppress gray mold development on grapes. The present study reports that sub-lethal dose of CP (0.2 % w/v) could allow growth with substantial reprograming the genome-wide transcripts of B. cinerea. Upon CP treatment, the genes related to fungal methylcitrate cycle (responsible for catabolizing propionate) were upregulated. Meanwhile, CP treatment broadly downregulated the transcript levels of the virulence factors. Further comparative analysis of multiple transcriptomes confirmed that the CP treatment largely suppressed the expression of genes related to development and function of infection cushion. Collectively, these findings indicate that CP can not only reduce fungal growth, but also abrogate fungal virulence factors. Thus, CP has significant potential for the control of gray mold in fruit crops.
Asunto(s)
Propionatos , Factores de Virulencia , Botrytis , Enfermedades de las Plantas/microbiologíaRESUMEN
Fusarium asiaticum is an epidemiologically important pathogen of cereal crops in east Asia, accounting for both yield losses and mycotoxin contamination problems in food and feed products. FaWC1, a component of the blue-light receptor White Collar complex (WCC), relies on its transcriptional regulatory zinc finger domain rather than the light-oxygen-voltage domain to regulate pathogenicity of F. asiaticum, although the downstream mechanisms remain obscure. In this study, the pathogenicity factors regulated by FaWC1 were analyzed. It was found that loss of FaWC1 resulted in higher sensitivity to reactive oxygen species (ROS) than in the wild type, while exogenous application of the ROS quencher ascorbic acid restored the pathogenicity of the ΔFawc1 strain to the level of the wild type, indicating that the reduced pathogenicity of the ΔFawc1 strain is due to a defect in ROS tolerance. Moreover, the expression levels of the high-osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) pathway genes and their downstream genes encoding ROS scavenging enzymes were downregulated in the ΔFawc1 mutant. Upon ROS stimulation, the FaHOG1-green fluorescent protein (GFP)-expressing signal driven by the native promoter was inducible in the wild type but negligible in the ΔFawc1 strain. Overexpressing Fahog1 in the ΔFawc1 strain could recover the ROS tolerance and pathogenicity of the ΔFawc1 mutant, but it remained defective in light responsiveness. In summary, this study dissected the roles of the blue-light receptor component FaWC1 in regulating expression levels of the intracellular HOG-MAPK signaling pathway to affect ROS sensitivity and pathogenicity in F. asiaticum. IMPORTANCE The well-conserved fungal blue-light receptor White Collar complex (WCC) is known to regulate virulence of several pathogenic species for either plant or human hosts, but how WCC determines fungal pathogenicity remains largely unknown. The WCC component FaWC1 in the cereal pathogen Fusarium asiaticum was previously found to be required for full virulence. The present study dissected the roles of FaWC1 in regulating the intracellular HOG MAPK signaling pathway to affect ROS sensitivity and pathogenicity in F. asiaticum. This work thus extends knowledge of the association between fungal light receptors and the intracellular stress signaling pathway to regulate oxidative stress tolerance and pathogenicity in an epidemiologically important fungal pathogen of cereal crops.
Asunto(s)
Proteínas Quinasas Activadas por Mitógenos , Estrés Oxidativo , Humanos , Virulencia/genética , Especies Reactivas de Oxígeno/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión GénicaRESUMEN
The 16th Workshop on Recent Issues in Bioanalysis (16th WRIB) took place in Atlanta, GA, USA on September 26-30, 2022. Over 1000 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 16th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy, cell therapy and vaccines. Moreover, in-depth workshops on the ICH M10 BMV final guideline (focused on this guideline training, interpretation, adoption and transition); mass spectrometry innovation (focused on novel technologies, novel modalities, and novel challenges); and flow cytometry bioanalysis (rising of the 3rd most common/important technology in bioanalytical labs) were the special features of the 16th edition. As in previous years, WRIB continued to gather a wide diversity of international, industry opinion leaders and regulatory authority experts working on both small and large molecules as well as gene, cell therapies and vaccines to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance, and achieving scientific excellence on bioanalytical issues. This 2022 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2022 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 1A) covers the recommendations on Mass Spectrometry and ICH M10. Part 1B covers the Regulatory Agencies' Inputs on Bioanalysis, Biomarkers, Immunogenicity, Gene & Cell Therapy and Vaccine. Part 2 (LBA, Biomarkers/CDx and Cytometry) and Part 3 (Gene Therapy, Cell therapy, Vaccines and Biotherapeutics Immunogenicity) are published in volume 15 of Bioanalysis, issues 15 and 14 (2023), respectively.
Asunto(s)
Cromatografía , Vacunas , Biomarcadores , Tratamiento Basado en Trasplante de Células y Tejidos , Espectrometría de Masas , Oligonucleótidos , TecnologíaRESUMEN
BACKGROUND AND OBJECTIVE: CC-292 is a potent, selective, orally administered small molecule inhibitor of Bruton's tyrosine kinase (BTK). To support the clinical investigation of CC-292, a randomized, seven-treatment, seven-period, crossover study was conducted to assess the relative bioavailability, pH effect, food effect, and dose-proportionality of two formulated tablets of CC-292. METHODS: Healthy subjects (n = 24) were enrolled in the study and randomly assigned into different treatment sequences. Blood samples were collected at pre-specified time points to measure the drug concentrations in plasma. Statistical analyses were performed to compare the pharmacokinetics of CC-292 under different conditions. RESULTS: The relative bioavailability of the newly developed formulation [spray-dried dispersion (SDD)] to the reference formulation (P22) was 1.24. When a single dose of CC-292 SDD tablet was administered under fed conditions, the area under the plasma concentration-time curve from time zero to infinity (AUC∞) increased by 10.9% and the maximum plasma drug concentration Cmax) decreased by 19.4% compared to when CC-292 was administered under fasted conditions. When a single dose of CC-292 SDD tablet was administered after multiple doses of omeprazole, the area under the plasma concentration-time curve from time zero to infinity (AUC∞) decreased by 36.8% and the maximum plasma drug concentration Cmax) decreased by 48.1% compared to when CC-292 was administered alone. Over a dose range of 100-300 mg (SDD formulation), CC-292 exhibited more than dose-proportional increases of drug exposures. CONCLUSIONS: CC-292 was well tolerated when administered to healthy subjects as single oral doses under all conditions. Food intake had no clinically relevant impact on CC-292 pharmacokinetics compared to fasted conditions. Therefore, CC-292 can be administered with or without food. Co-administration of CC-292 with multiple doses of omeprazole (40 mg) decreased the pharmacokinetic exposure of CC-292. However, the effect was not clinically relevant. CLINICAL TRIALS REGISTRATION: NCT02433457.