Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; : e2310092, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38377281

RESUMEN

Supported ionic liquid membranes (SILMs), owing to their capacities in harnessing physicochemical properties of ionic liquid for exceptional CO2 solubility, have emerged as a promising platform for CO2 extraction. Despite great achievements, existing SILMs suffer from poor structural and performance stability under high-pressure or long-term operations, significantly limiting their applications. Herein, a one-step and in situ interfacial polymerization strategy is proposed to elaborate a thin, mechanically-robust, and highly-permeable polyamide armor on the SILMs to effectively protect ionic liquid within porous supports, allowing for intensifying the overall stability of SILMs without compromising CO2 separation performance. The armored SILMs have a profound increase of breakthrough pressure by 105% compared to conventional counterparts without armor, and display high and stable operating pressure exceeding that of most SILMs previously reported. It is further demonstrated that the armored SILMs exhibit ultrahigh ideal CO2 /N2 selectivity of about 200 and excellent CO2 permeation of 78 barrers upon over 150 h operation, as opposed to the full failure of CO2 separation performance within 36 h using conventional SILMs. The design concept of armor provides a flexible and additional dimension in developing high-performance and durable SILMs, pushing the practical application of ionic liquids in separation processes.

2.
Nat Commun ; 15(1): 1539, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378907

RESUMEN

It is particularly essential to analyze the complex crosslinked networks within polyamide membranes and their correlation with separation efficiency for the insightful tailoring of desalination membranes. However, using the degree of network crosslinking as a descriptor yields abnormal analytical outcomes and limited correlation with desalination performance due to imperfections in segmentation and calculation methods. Herein, we introduce a more rational parameter, denoted as harmonic amide bond density (HABD), to unravel the relationship between the crosslinked networks of polyamide membranes and their desalination performance. HABD quantifies the number of distinct amide bonds per unit mass of polyamide, based on a comprehensive segmentation of polyamide structure and consistent computational protocols derived from X-ray photoelectron spectroscopy data. Compared to its counterpart, HABD overcomes the limitations and offers a more accurate depiction of the crosslinked networks. Empirical data validate that HABD exhibits the expected correlation with the salt rejection and water permeance of reverse osmosis and nanofiltration polyamide membranes. Notably, HABD is applicable for analyzing complex crosslinked polyamide networks formed by highly functional monomers. By offering a powerful toolbox for systematic analysis of crosslinked polyamide networks, HABD facilitates the development of permselective membranes with enhanced performance in desalination applications.

3.
Adv Mater ; 36(24): e2400075, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38597782

RESUMEN

Designing nanocomposite hydrogels with oriented nanosheets has emerged as a promising toolkit to achieve preferential performances that go beyond their disordered counterparts. Although current fabrication strategies via electric/magnetic force fields have made remarkable achievements, they necessitate special properties of nanosheets and suffer from an inferior orientation degree of nanosheets. Herein, a facile and universal approach is discovered to elaborate MXene-based nanocomposite hydrogels with highly oriented, heterogeneous architecture by virtue of supergravity to replace conventional force fields. The key to such architecture is to leverage bidirectional, force-tunable attributes of supergravity containing coupled orthogonal shear and centrifugal force field for steering high-efficient movement, pre-orientation, and stacking of MXene nanosheets in the bottom. Such a synergetic effect allows for yielding heterogeneous nanocomposite hydrogels with a high-orientation MXene-rich layer (orientation degree, f = 0.83) and a polymer-rich layer. The authors demonstrate that MXene-based nanocomposite hydrogels leverage their high-orientation, heterogeneous architecture to deliver an extraordinary electromagnetic interference shielding effectiveness of 55.2 dB at 12.4 GHz yet using a super-low MXene of 0.3 wt%, surpassing most hydrogels-based electromagnetic shielding materials. This versatile supergravity-steered strategy can be further extended to arbitrary nanosheets including MoS2, GO, and C3N4, offering a paradigm in the development of oriented nanocomposites.

4.
J Colloid Interface Sci ; 651: 841-848, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37573730

RESUMEN

Directional sweat-wicking by Janus fabrics has gained substantial attention in promoting personal wet-thermal management for optimal human comfort. During intense physical exercise, excessive sweating can cause the flooding of fabrics and weaken their wicking capabilities once the inner capillary channels are saturated. To address this issue, we develop a photothermal Janus fabric through a facile polydopamine (PDA) deposition followed by single-sided spray-coating of hydrophobic polydimethylsiloxane (PDMS). Such innovative fabrics enable directional sweat-wicking through a Janus structure and persistent removal of excessive sweat by solar-powered evaporation. Under sunlight, our photothermal Janus fabrics exhibit an enhanced evaporation rate, approximately twice compared with that of conventional Janus fabrics (∼1.143 ± 0.027 kg m-2h-1), making them suitable for high sweating rates during vigorous exercise. Furthermore, these fabrics help to maintain the skin temperature within the normal range, preventing hypothermia caused by profuse sweating. In addition, our photothermal Janus fabrics exhibit excellent washing durability even after multiple washing cycles, ensuring prolonged performance and safety.


Asunto(s)
Sudor , Sudoración , Humanos , Acción Capilar , Interacciones Hidrofóbicas e Hidrofílicas
5.
Membranes (Basel) ; 11(6)2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34200579

RESUMEN

The deepening crisis of freshwater resources has been driving the further development of new types of membrane-based desalination technologies represented by nanofiltration membranes. Solving the existing trade-off limitation on enhancing the water permeance and the rejection of salts is currently one of the most concerned research interests. Here, a facile and scalable approach is proposed to tune the interfacial polymerization by constructing a calcium alginate hydrogel layer on the porous substrates. The evenly coated thin hydrogel layer can not only store amine monomers like the aqueous phase but also suppress the diffusion of amine monomers inside, as well as provide a flat and stable interface to implement the interfacial polymerization. The resultant polyamide nanofilms have a relatively smooth morphology, negatively charged surface, and reduced thickness which facilitate a fast water permeation while maintaining rejection efficiency. As a result, the as-prepared composite membranes show improved water permeance (~30 Lm-2h-1bar-1) and comparable rejection of Na2SO4 (>97%) in practical applications. It is proved to be a feasible approach to manufacturing high-performance nanofiltration membranes with the assist of alginate hydrogel regulating interfacial polymerization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA