Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(36): e2206946119, 2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36037378

RESUMEN

Overall seawater electrolysis is an important direction for the development of hydrogen energy conversion. The key issues include how to achieve high selectivity, activity, and stability in seawater electrolysis reactions. In this report, the heterostructures of graphdiyne-RhOx-graphdiyne (GDY/RhOx/GDY) were constructed by in situ-controlled growth of GDY on RhOx nanocrystals. A double layer interface of sp-hybridized carbon-oxide-Rhodium (sp-C∼O-Rh) was formed in this system. The microstructures at the interface are composed of active sites of sp-C∼O-Rh. The obvious electron-withdrawing surface enhances the catalytic activity with orders of magnitude, while the GDY outer of the metal oxides guarantees the stability. The electron-donating and withdrawing sp-C∼O-Rh structures enhance the catalytic activity, achieving high-performance overall seawater electrolysis with very small cell voltages of 1.42 and 1.52 V at large current densities of 10 and 500 mA cm-2 at room temperatures and ambient pressures, respectively. The compositional and structural superiority of the GDY-derived sp-C-metal-oxide active center offers great opportunities to engineer tunable redox properties and catalytic performance for seawater electrolysis and beyond. This is a typical successful example of the rational design of catalytic systems.

2.
J Am Chem Soc ; 146(15): 10573-10580, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38567542

RESUMEN

Atomic thick two-dimensional (2D) materials with exciting physical, chemical, and electronic properties are gaining increasing attention in next-generation science and technology, showing great promise in catalysis and energy science. However, the precise design and synthesis of efficient catalytic systems based on such materials still face many difficulties, especially in how to control the preparation of structurally determined, highly active, atomic-scale distribution of material systems. Here, we report that a highly active zerovalent osmium single-atom-layer with a thickness of single atom size has been successfully and controllably self-organized on the surface of 2D graphdiyne (GDY) material. Detailed characterizations showed that the incomplete charge transfer effect between the Os atoms and GDY not only stabilized the catalytic system but also improved the intrinsic activity, making the Gibbs free energy reach the best and resulting in remarkable performance with a small overpotential of 49 mV at 500 mA cm-2, large specific j0 of 18.6 mA cm-2, and turnover frequency of 3.89 H2 s-1 at 50 mV. In addition, the formation of sp-C-Os bonds guarantees the high long-term stability of 800 h at a large current density of 500 mA cm-2 in alkaline simulated seawater.

3.
J Am Chem Soc ; 146(8): 5669-5677, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38350029

RESUMEN

Advanced atomic-level heterointerface engineering provides a promising method for the preparation of next-generation catalysts. Traditional carbon-based heterointerface catalytic performance rely heavily on the undetermined defects in complex and demanding preparation processes, rendering it impossible to control the catalytic performance. Here, we present a general method for the controlled growth of metal atom arrays on graphdiyne (GDY/IrCuOx), and we are surprised to find strong heterointerface strains during the growth. We successfully controlled the thickness of GDY to regulate the heterointerface metal atoms and achieved compressive strain at the interface. Experimental and density functional theory calculation results show that the unique incomplete charge transfer between GDY and metal atoms leads to the formation of strong interactions and significant heterointerface compressive strain between GDY and IrCuOx, which results in high oxidation performances with 1000 mA cm-2 at a low overpotential of 283 mV and long-term stability at large current densities in alkaline simulated seawater. We anticipate that this finding will contribute to construction of high-performance heterogeneous interface structures, leading to the development of new generation of GDY-based heterojunction catalysts in the field of catalysis for future promising performance.

4.
Small ; : e2401347, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38716685

RESUMEN

A challenge facing the chlor-alkali process is the lack of electrocatalyst with high activity and selectivity for the efficient industrial production of chlorine. Herein the authors report a new electrocatalyst that can generate multi-interface structure by in situ growth of graphdiyne on the surface of cobalt oxides (GDY/Co3O4), which shows great potential in highly selective and efficient chlorine production. This result is due to the strong electron transfer and high density charge transport between GDY and Co3O4 and the interconversion of the mixed valence states of the Co atoms itself. These intrinsic characteristics efficiently enhance the conductivity of the catalyst, facilitate the reaction kinetics, and improve the overall catalytic selectivity and activity. Besides, the protective effect of the formed GDY layer is remarkable endowing the catalyst with excellent stability. The catalyst can selectively produce chlorine in low-concentration of NaCl aqueous solution at room temperature and pressure with the highest Faraday efficiency of 80.67% and an active chlorine yield rate of 184.40 mg h-1 cm-2, as well as superior long-term stability.

5.
Angew Chem Int Ed Engl ; 63(21): e202318080, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38548702

RESUMEN

The preparation of formic acid by direct reduction of carbon dioxide is an important basis for the future chemical industry and is of great significance. Due to the serious shortage of highly active and selective electrocatalysts leading to the development of direct reduction of carbon dioxide is limited. Herein the target catalysts with high CO2RR activity and selectivity were identified by integrating DFT calculations and high-throughput screening and by using graphdiyne (GDY) supported metal oxides quantum dots (QDs) as the ideal model. It is theoretically predicted that GDY supported indium oxide QDs (i.e., InOx/GDY) is a new heterostructure electrocatalyst candidate with optimal CO2RR performance. The interfacial electronic strong interactions effectively regulate the surface charge distribution of QDs and affect the adsorption/desorption behavior of HCOO* intermediate during CO2RR to achieve highly efficient CO2 conversion. Based on the predicted composition and structure, we synthesized the advanced catalytic system, and demonstrates superior CO2-to-HCOOH conversion performance. The study presents an effective strategy for rational design of highly efficient heterostructure electrocatalysts to promote green chemical production.

6.
Angew Chem Int Ed Engl ; 63(9): e202316723, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38192242

RESUMEN

The manufacture of nitric acid (HNO3 ) consumes large amounts of energy and causes serious environmental pollution. Electrochemical synthesis is regarded as a key way to eliminate carbon emissions from the chemicals industry. The selective electrosynthesis of HNO3 from nitrogen was achieved by controllable assembly of cobalt metal on graphdiyne surface using a powerful tool of electrochemistry at ambient conditions. As an advanced material, graphdiyne (GDY) has a large conjugated structure on its surface and is rich in sp-C triple bond skeleton, which can achieve strong interaction with metal atoms, resulting in incomplete charge transfer between graphdiyne and cobalt atoms. The experimental and theoretical calculation results show that the highly oxidized cobalt on graphdiyne (HOCo/GDY) can selectively and efficiently activate and convert the nitrogen into the key intermediate *NO, which promotes the efficient overall conversion performance of nitrogen to nitric acid. Thus, the highest nitric acid yield (192.0 µg h-1 mg-1 ) and Faradaic efficiency (21.5 %) were achieved at low potentials.

7.
Angew Chem Int Ed Engl ; : e202406043, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866704

RESUMEN

Metal atom catalysts have been among the most important research objects due to their specific physical and chemical properties. However, precise control of the anchoring of metal atoms is still challenging to achieve. Cobalt and iridium atomic arrays formed sequentially ordered stable arrays in graphdiyne (GDY) triangular cavities depending on their intrinsic chemical properties and interactions. The success of this method was attributed to multifunctional integration of GDY, enabling selective growth from one to several atoms and various atomic densities. The bimetallic atom arrays show several advantages resulting from reducibility of acetylene bonds, space limiting effect, incomplete charge transfer between GDY and metal atoms, and sp-C hybridized triple bond skeleton. This well-designed system exhibits unprecedented oxygen evolution reaction (OER) performance with a mass activity of 2.6 A mgcat.-1 at a low overpotential of 300 mV, which is 216.6 times higher than the state-of-the-art IrO2 catalyst, and long-term stability.

8.
J Am Chem Soc ; 145(2): 864-872, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36548209

RESUMEN

"Dynamic" behavior materials with high surface activity and the ability of chemical bond conversion are the frontier materials in the field of renewable energy. The outstanding feature of these materials is that they have adaptive electronic properties that external stimuli can adjust. An original discovery in a new crystalline two-dimensional phosphine-graphdiyne (P-GDY) material is described here. Although the p-π conjugation of most trivalent phosphorus π-systems is insignificant because of the pyramidal configuration, the lone pair electrons of phosphorus atoms participate strongly in the delocalization under the influence of the interlayer van der Waals forces in P-GDY. Due to the dynamically reversible nature of noncovalent interactions (p-π conjugation), P-GDY exhibits a specific adaptive behavior and realizes the responsive reversible transport of a lithium ion by regulating p-π interactions. Our findings would provide the potential to develop a new family of responsive materials with tunable structures.

9.
Chem Soc Rev ; 51(7): 2681-2709, 2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35253033

RESUMEN

As a new member of carbon allotropes, graphdiyne (GDY) has the characteristics of being one-atom-thick with two-dimensional layers comprising sp and sp2 hybridized carbon atoms, and represents a trend in the development of carbon materials. Its unique chemical and electronic structures give GDY many unique and fascinating properties such as rich chemical bonds, highly conjugated and super-large π structures, infinitely distributed pores and high inhomogeneity of charge distribution. GDY has entered a period of rapid development, especially with the significant emergence of fundamental research and applied research achievements over the past five years. As one of the frontiers of chemistry and materials science, graphdiyne was listed in the Top 10 research areas in the 2020 Research Frontiers report and was jointly released in the Top 10 in the world by Clarivate and the Chinese Academy of Sciences. The research results have shown the great potential of GDY in the applications of energy, catalysis, environmental science, electronic devices, detectors, biomedicine and therapy, etc. Scientists are eager to explore and fully reveal the new properties, discover new scientific concepts and phenomena, discover the new conversion modes and mechanisms of GDY in photoelectricity, energy, and catalysis, etc., and build the important scientific value of new conversion devices. This review covers research on the foundation and application of GDY, such as the controlled preparation of new methods of GDY and GDY-based materials, studies on new mechanisms and properties in chemistry and physics, and the foundation and applications in energy, catalysis, photoelectric and devices.


Asunto(s)
Carbono , Grafito , Carbono/química , Catálisis , Electrónica , Grafito/química
10.
Angew Chem Int Ed Engl ; 62(41): e202310722, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37642147

RESUMEN

Selective hydrogenation of olefins with water as the hydrogen source at ambient conditions is still a big challenge in the field of catalysis. Herein, the electrocatalytic hydrogenation of purely aliphatic and functionalized olefins was achieved by using graphdiyne based copper oxide quantum dots (Cux O/GDY) as cathodic electrodes and water as the hydrogen source, with high activity and selectivity in aqueous solution at high current density under ambient temperature and pressure. In particular, the sp-/sp2 -hybridized graphdiyne catalyst allows the selective hydrogenation of cis-trans isomeric olefins. The chemical and electronic structure of the GDY results in the incomplete charge transfer between GDY and Cu atoms to optimize the adsorption/desorption of the reaction intermediates and results in high reaction selectivity and activity for hydrogenation reactions.

11.
Angew Chem Int Ed Engl ; 62(8): e202215968, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36593176

RESUMEN

Rechargeable aqueous zinc ion batteries (AZIBs) promise high energy density, low redox potential, low cost and safety; however, their cycle performances are seriously insufficient to restrict the progress in this field. We propose a new concept of atomic electrode formed on the graphdiyne (GDY). This new idea electrode was synthesized by selectively, uniformly, and stably anchoring Zn atoms on GDY at the beginning of plating. The Zn atoms are induced to grow into larger size Zn clusters, which continue to grow into nanoflat. Finally, a new heterojunction interface is formed on GDY without any Zn dendrites and side reactions, even at high current densities. Such stepwise induction of growth greatly suppresses the formation of Zn dendrites, resulting in high electroplating/stripping reversibility and lifespan of AZIBs.

12.
J Am Chem Soc ; 144(4): 1921-1928, 2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35044172

RESUMEN

The development of efficient and durable electrocatalysts is the only way to achieve commercial fuel cells. A new, efficient method was utilized for epitaxial growth of gold quantum dots using atomically platinum chlorine species with porous graphdiyne as a support (PtCl2Au(111)/GDY), for obtaining successful multicomponent quantum dots with a size of 2.37 nm. The electrocatalyst showed a high mass activity of 175.64 A mgPt-1 for methanol oxidation reactions (MORs) and 165.35 A mgPt-1 for ethanol oxidation reactions (EORs). The data for this experiment are 85.67 and 246.80 times higher than those of commercial Pt/C, respectively. The catalyst also showed highly robust stability for MORs with negligible specific activity decay after 110 h at 10 mA cm-2. Both structure characterizations and theoretical calculations reveal that the excellent catalytic performance can be ascribed to the chlorine introduced to modify the d-band structure on the Pt surface and suppression of the CO poisoning pathway of the MOR. Our results indicate that an atomically dispersed metal species tailoring strategy opens up a new path for the efficient design of highly active and stable catalysts.

13.
Small ; 18(13): e2107136, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35119196

RESUMEN

The intrinsic catalytic activity and active sites of the catalyst originate from the interface efficient charge transfer. A 2D graphdiyne (GDY) layer grown on the surface of zeolitic imidazolate framework nanocubes (ZIFNC@GDY) forms a novel structure of a perfect "donor-bridge-acceptor" interface, in which the ZIFNC and GDY act as electron donor and acceptor, respectively, linked by the sp-C-Co and sp-C-N bonds as bridges. Importantly, the as-prepared catalyst exhibits intrinsically high reactivity for ammonia production through the nitrate reduction reaction (NtRR) in neutral aqueous solutions at ambient pressures and temperatures. The NtRR performance of the as-prepared electrocatalyst is confirmed by the high NH3 yield rate (YNH3 ) of 0.40 ± 0.02 mmol h-1  cm-2 at potential of -0.745V versus RHE and Faradaic efficiency (FE) of 98.51 ± 0.75%, as well as the excellent stability. We show that such unique interfacial structures can accelerate the efficient electron transfers between the zeolitic imidazolate framework nanocubes (ZIFNC) core and GDY shell, enrich the electron density on the GDY surface, and thereby promote fast redox switching, creating more active sites, and improving the catalytic performances.


Asunto(s)
Amoníaco , Zeolitas , Catálisis , Oxidación-Reducción
14.
Angew Chem Int Ed Engl ; 61(6): e202112304, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34799952

RESUMEN

Zn dendrite issue was intensively studied via tuning zinc ion flux. pH change seriously influences dendrite formation, while its importance has not been revealed. Here, we construct a N-modification graphdiyne interface (NGI) to stabilize pH by mediating hydrated zinc ion desolvation. Operando pH detection reveals pH stabilization by NGI. This works with pores in NGI to achieve dendrite-free Zn deposition and an increased symmetric cell lifespan by 116 times. Experimental and theoretical results owe pH stabilization to desolvation with a reduced activation energy achieved by electron transfer from solvation sheath to N atom. The efficient desolvation ensures that electron directly transfers from substrate to Zn2+ (rather than the coordinated H2 O), avoiding O-H bond splitting. Hence, Zn-V6 O13 battery achieves a long lifespan at 20.65 mA cm-2 and 1.07 mAh cm-2 . This work reveals the significance of interface pH and provides a new approach to address Zn dendrite issue.

15.
Small ; 17(48): e2006136, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33667018

RESUMEN

Self-active metal-free graphdiyne (GDY) is used, which has a precise chemical structure, as a model carbon-based metal-free electrocatalyst to assess its activity in the hydrogen evolution reaction (HER) and to understand the origin of electrocatalytic performance at the atomic level. The studies reveal that the unusual electrocatalytic properties of GDY originate from its unique nanostructure, which can simultaneously provide highly active sites for hydrogen adsorption and facilitate the electron-transfer process for proton reduction. Accordingly, GDY can act as a metal-free efficient HER electrocatalyst with Pt-like HER activity, but with long-term durability superior to that of Pt/C under the wide pH range (from acidic to basic). To the best of knowledge, such HER performance is better than that of other reported metal-free electrocatalysts and most transition-metal electrocatalysts-even Pt-based ones.


Asunto(s)
Grafito , Hidrógeno
16.
Angew Chem Int Ed Engl ; 60(6): 3170-3174, 2021 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-33107669

RESUMEN

A highly active graphdiyne heterojunction with highly efficient photocatalysis is designed and fabricated. This catalyst demonstrates transformative properties on photocatalysis for ammonia synthesis. Such excellent properties are reigned from graphdiyne incorporating Fe site-specific magnetite resulting in a valence state transition within the catalyst. Our results show the strong advantages of graphdiyne in effectively regulating magnetite activity and coordination environments and also indicate that magnetite can selectively form two different valence tetrahedral coordination Fe and octahedral coordination Fe. The catalysts show remarkable catalytic performance for ammonia synthesis by photocatalysis, indicating transformative photocatalytic activity with an ammonia yield (Y NH 3 ) of unprecedented level of 1762.35±153.71 µmol h-1 gcat. -1 (the highest Y NH 3 could reach up to 1916.06 µmol h-1 gcat. -1 ). This work makes full use of the structural and property features of graphdiyne and opens up a new direction for photocatalysis in the field of catalysis.

17.
Chemphyschem ; 21(19): 2145-2149, 2020 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-32779890

RESUMEN

Graphdiyne, as a magical support, can anchor zero valence metal atoms, providing us with an opportunity to develop emerging catalysts with the maximized active sites and selectivity. Herein we report high-performance atom catalysts (ACs), Cu0 /GDY, by anchoring Cu atoms on graphdiyne (GDY) for hydrogen evolution reaction (HER). The activity and selectivity of this catalyst are obviously superior to that of commercial 20 wt.% Pt/C, and the turnover frequency of 30.52 s-1 is 18 times larger than 20 wt.% Pt/C. Density functional theory (DFT) calculations demonstrate that the strong p-d coupling induced charge compensation leads to the zero valence state of the atomic-scaled transition metal catalyst. Our results show the strong advantages of graphdiyne-anchored metal atom catalysts in the field of electrochemical catalysis and opens up a new direction in the field of electrocatalysis.

18.
Chem Rev ; 118(16): 7744-7803, 2018 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-30048120

RESUMEN

Graphynes (GYs) are carbon allotropes with single-atom thickness that feature layered 2D structure assembled by carbon atoms with sp - and sp2 - hybridization form. Various functional theories have predicted GYs to have natural band gap with Dirac cones structure, presumably originating from inhomogeneous π-bonding between those carbon atoms with different hybridization and overlap of the carbon 2p z orbitals. Among all the GYs, graphdiyne (GDY) was the first reported to be prepared practically and, hence, attracted the attention of many researchers toward this new planar, layered material, as well as other GYs. Several approaches have been reported to be able to modify the band gap of GDY, containing invoking strain, boron/nitrogen doping, nanoribbon architectures, hydrogenation, and so on. GDY has been well-prepared in many different morphologies, like nanowires, nanotube arrays, nanowalls, nanosheets, ordered stripe arrays, and 3D framwork. The fascinating structure and electronic properties of GDY make it a potential candidate carbon material with many applications. It has recently revealed the practicality of GDY as catalyst; in rechargeable batteries, solar cells, electronic devices, magnetism, detector, biomedicine, and therapy; and for gas separation as well as water purification.

19.
Angew Chem Int Ed Engl ; 59(31): 13021-13027, 2020 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-32333453

RESUMEN

A freestanding 3D graphdiyne-cobalt nitride (GDY/Co2 N) with a highly active and selective interface is fabricated for the electrochemical nitrogen reduction reaction (ECNRR). Density function theory calculations reveal that the interface-bonded GDY contributes an unique p-electronic character to optimally modify the Co-N compound surface bonding, which generates as-observed superior electronic activity for NRR catalysis at the interface region. Experimentally, at atmospheric pressure and room temperature, the electrocatalyst creates a new record of ammonia yield rate (Y NH 3 ) and Faradaic efficiency (FE) of 219.72 µg h-1 mgcat. -1 and 58.60 %, respectively, in acidic conditions, higher than reported electrocatalysts. Such a catalyst is promising to generate new concepts, new knowledge, and new phenomena in electrocatalytic research, driving rapid development in the field of electrocatalysis.

20.
J Am Chem Soc ; 141(27): 10677-10683, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31149825

RESUMEN

The emergence of zerovalent atom catalysts has been highly attractive for catalytic science. For many years, scientists have explored the stability of zerovalent atom catalysts and demonstrated their unique properties. Here, we describe an atom catalyst (AC) with atomically dispersed zerovalent molybdenum atoms on graphdiyne (Mo0/GDY) with a high mass content of Mo atoms (up to 7.5 wt %) that was synthesized via a facile and scalable process. The catalyst shows both excellent selectivity and activity in the electrochemical reduction of nitrogen and in the hydrogen evolution reaction in aqueous solutions at room temperature and pressure. It is noted that this catalyst is the first bifunctional AC for highly efficient and selective ammonia and hydrogen generation. The catalytic process of our catalyst is well understood, the structure is defined, and the performance is excellent, providing a solid foundation for the generation and application of the new generation of catalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA