Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Microvasc Res ; 150: 104574, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37390963

RESUMEN

Low vitamin D (vitD) levels have been reported to be a risk factor for diabetes-related cardiovascular complications. This study examined the effects of vitD deficiency on oxidative stress (OS), inflammation, and levels of the vasoconstrictor angiotensin II (Ang II) in the microvascular tissue of type 2 diabetic patients. Patients were categorized into (i) vitD non-deficient diabetics (DNP, n = 10) and (ii) vitD-deficient diabetics (DDP, n = 10), based on their serum 25(OH)D levels. Subcutaneous fat tissues with intact blood vessels were collected during lower limb surgical procedures. The blood vessel were isolated; measurements of the antioxidant enzyme superoxide dismutase (SOD) activity, OS marker malondialdehyde (MDA), Ang II, and the inflammatory marker, TNF-α of the microvascular tissues were determined. Elevated MDA levels and reduced SOD activity, with higher levels of TNF-α and Ang II were observed in the microvascular tissues of DDP compared to DNP. VitD deficiency did not associate with glycemic parameters (fasting blood glucose and glycated hemoglobin) levels. In conclusion, vitD deficiency was correlated with higher microvascular tissue OS, inflammation, and Ang II levels in type 2 diabetic patients. This may contribute to early vasculopathy that occurs in diabetic patients, thus, may contribute to the planning of therapeutic strategies to delay or prevent cardiovascular complications.


Asunto(s)
Diabetes Mellitus Tipo 2 , Deficiencia de Vitamina D , Humanos , Angiotensina II/farmacología , Microcirculación , Factor de Necrosis Tumoral alfa/farmacología , Deficiencia de Vitamina D/diagnóstico , Inflamación , Estrés Oxidativo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/diagnóstico , Superóxido Dismutasa
2.
Curr Issues Mol Biol ; 44(12): 5866-5878, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36547060

RESUMEN

Carcinoscorpius rotundicauda (C. rotundicauda) is one of the four species of horseshoe crabs (HSCs). The HSC hemocytes store defense molecules that are released upon encountering invading pathogens. The HSCs rely on this innate immunity to continue its existence as a living fossil for more than 480 million years. To gain insight into the innate mechanisms involved, transcriptomic analysis was performed on isolated C. rotundicauda hemocytes challenged with lipopolysaccharides (LPS), the main components of the outer cell membrane of gram-negative bacteria. RNA-sequencing with Illumina HiSeq platform resulted in 232,628,086 and 245,448,176 raw reads corresponding to 190,326,253 and 201,180,020 high-quality mappable reads from control and LPS-stimulated hemocytes, respectively. Following LPS-stimulation, 79 genes were significantly upregulated and 265 genes were downregulated. The differentially expressed genes (DEGs) were related to multiple immune functional categories and pathways such as those of the cytoskeleton, Toll and Imd, apoptosis, MAP kinase (MAPK), inositol phosphate metabolism, phagosome, leucocyte endothelial migration, and gram-negative bacterial infection, among others. This study provides important information about the mechanisms of response to LPS, which is relevant for the understanding the HSCs' immune response.

3.
Fish Shellfish Immunol ; 117: 148-156, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34358702

RESUMEN

Horseshoe crabs (HSCs) are living fossil species of marine arthropods with a long evolutionary history spanning approximately 500 million years. Their survival is helped by their innate immune system that comprises cellular and humoral immune components to protect them against invading pathogens. To help understand the genetic mechanisms involved, the present study utilised the Illumina HiSeq platform to perform transcriptomic analysis of hemocytes from the HSC, Tachypleus gigas, that were challenged with lipopolysaccharides (LPS). The high-throughput sequencing resulted in 352,077,208 and 386,749,136 raw reads corresponding to 282,490,910 and 305,709,830 high-quality mappable reads for the control and LPS-treated hemocyte samples, respectively. Based on the log-fold change of > 0.3 or < -0.3, 1338 genes were significantly upregulated and 215 genes were significantly downregulated following LPS stimulation. The differentially expressed genes (DEGs) were further identified to be associated with multiple pathways such as those related to immune defence, stress response, cytoskeleton function and signal transduction. This study provides insights into the underlying molecular and regulatory mechanisms in hemocytes exposed to LPS, which has relevance for the study of the immune response of HSCs to infection.


Asunto(s)
Hemocitos/efectos de los fármacos , Cangrejos Herradura/efectos de los fármacos , Lipopolisacáridos/farmacología , Transcriptoma/efectos de los fármacos , Animales , Perfilación de la Expresión Génica , Cangrejos Herradura/genética
4.
J Cell Physiol ; 234(9): 14556-14573, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30710353

RESUMEN

Transient receptor potential (TRP) proteins are a diverse family of ion channels present in multiple types of tissues. They function as gatekeepers for responses to sensory stimuli including temperature, vision, taste, and pain through their activities in conducting ion fluxes. The TRPM (melastatin) subfamily consists of eight members (i.e., TRPM1-8), which collectively regulate fluxes of various types of cations such as K+ , Na+ , Ca2+ , and Mg2+ . Growing evidence in the past two decades indicates that TRPM ion channels, their isoforms, or long noncoding RNAs encoded within the locus may be oncogenes involved in the regulation of cancer cell growth, proliferation, autophagy, invasion, and epithelial-mesenchymal transition, and their significant association with poor clinical outcomes of cancer patients. In this review, we describe and discuss recent findings implicating TRPM channels in different malignancies, their functions, mechanisms, and signaling pathways involved in cancers, as well as summarizing their normal physiological functions and the availability of ion channel pharmacological inhibitors.

5.
Malays J Med Sci ; 25(4): 1-5, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30914843

RESUMEN

Honey is uniquely produced by honeybees (Apis sp.) and stingless bees (Meliponini sp.) and exhibits tremendous medicinal properties such as antimicrobial, anticarcinogen and antioxidant. However, it has not been included as a mainstream approach to disease management and has been disregarded in the modern pharmaceutical era. The stingless bee, which is known locally as lebah kelulut in Malaysia, is an important species that is well adapted for tropical countries and has emerged as an alternative source of honey. The reinventing honey quality (RHQ) project was introduced in 2012 to empower growth in the stingless bee industry, which has a direct impact on the production of high-quality honey. The objectives of the project include transforming the industry into a sustainable source of income for beekeepers, while simultaneously catalysing bee conservation activities for plant and crop pollination, thus becoming a new medium for targeting socio-economies and ecology.

6.
Cancer Cell Int ; 17: 74, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28785170

RESUMEN

BACKGROUND: Increased expression of voltage-gated sodium channels (VGSCs) have been implicated with strong metastatic potential of human breast cancer in vitro and in vivo where the main culprits are cardiac isoform Nav1.5 and its 'neonatal' splice variant, nNav1.5. Several factors have been associated with Nav1.5 and nNav1.5 gain of expression in breast cancer mainly hormones, and growth factors. AIM: This study aimed to investigate the role of epigenetics via transcription repressor, repressor element silencing transcription factor (REST) and histone deacetylases (HDACs) in enhancing Nav1.5 and nNav1.5 expression in human breast cancer by assessing the effect of HDAC inhibitor, trichostatin A (TSA). METHODS: The less aggressive human breast cancer cell line, MCF-7 cells which lack Nav1.5 and nNav1.5 expression was treated with TSA at a concentration range 10-10,000 ng/ml for 24 h whilst the aggressive MDA-MB-231 cells was used as control. The effect of TSA on Nav1.5, nNav1.5, REST, HDAC1, HDAC2, HDAC3, MMP2 and N-cadherin gene expression level was analysed by real-time PCR. Cell growth (MTT assay) and metastatic behaviors (lateral motility and migration assays) were also measured. RESULTS: mRNA expression level of Nav1.5 and nNav1.5 were initially very low in MCF-7 compared to MDA-MB-231 cells. Inversely, mRNA expression level of REST, HDAC1, HDAC2, and HDAC3 were all greater in MCF-7 compared to MDA-MB-231 cells. Treatment with TSA significantly increased the mRNA expression level of Nav1.5 and nNav1.5 in MCF-7 cells. On the contrary, TSA significantly reduced the mRNA expression level of REST and HDAC2 in this cell line. Remarkably, despite cell growth inhibition by TSA, motility and migration of MCF-7 cells were enhanced after TSA treatment, confirmed with the up-regulation of metastatic markers, MMP2 and N-cadherin. CONCLUSIONS: This study identified epigenetics as another factor that regulate the expression level of Nav1.5 and nNav1.5 in breast cancer where REST and HDAC2 play important role as epigenetic regulators that when lacking enhances the expression of Nav1.5 and nNav1.5 thus promotes motility and migration of breast cancer. Elucidation of the regulatory mechanisms for gain of Nav1.5 and nNav1.5 expression may be helpful for seeking effective strategies for the management of metastatic diseases.

7.
Bioorg Chem ; 54: 60-7, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24813683

RESUMEN

Garcinia hombroniana (seashore mangosteen) in Malaysia is used to treat itching and as a protective medicine after child birth. This study was aimed to investigate the bioactive chemical constituents of the bark of G. hombroniana. Ethyl acetate and dichloromethane extracts of G. hombroniana yielded two new (1, 9) and thirteen known compounds which were characterized by the spectral techniques of NMR, UV, IR and EI/ESI-MS, and identified as; 2,3',4,5'-tetrahydroxy-6-methoxybenzophenone(1), 2,3',4,4'-tetrahydroxy-6-methoxybenzophenone (2), 2,3',4,6-tetrahydroxybenzophenone (3), 1,3,6,7-tetrahydroxyxanthone (4), 3,3',4',5,7-pentahydroxyflavone (5),3,3',5,5',7-pentahydroxyflavanone (6), 3,3',4',5,5',7-hexahydroxyflavone (7), 4',5,7-trihydroxyflavanone-7-rutinoside (8), 18(13→17)-abeo-3ß-acetoxy-9α,13ß-lanost-24E-en-26-oic acid (9), garcihombronane B (10), garcihombronane D (11), friedelan-3-one (12), lupeol (13), stigmasterol (14) and stigmasterol glucoside (15). In the in vitro cytotoxicity against MCF-7, DBTRG, U2OS and PC-3 cell lines, compounds 1 and 9 displayed good cytotoxic effects against DBTRG cancer cell lines. Compounds 1-8 were also found to possess significant antioxidant activities. Owing to these properties, this study can be further extended to explore more significant bioactive components of this plant.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Antioxidantes/farmacología , Benzofenonas/farmacología , Garcinia/química , Triterpenos/farmacología , Antineoplásicos Fitogénicos/síntesis química , Antineoplásicos Fitogénicos/química , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Benzofenonas/química , Benzofenonas/aislamiento & purificación , Benzotiazoles/antagonistas & inhibidores , Compuestos de Bifenilo/antagonistas & inhibidores , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Radicales Libres/antagonistas & inhibidores , Humanos , Células MCF-7 , Estructura Molecular , Picratos/antagonistas & inhibidores , Relación Estructura-Actividad , Ácidos Sulfónicos/antagonistas & inhibidores , Triterpenos/química , Triterpenos/aislamiento & purificación
8.
BMC Complement Altern Med ; 14: 106, 2014 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-24646375

RESUMEN

BACKGROUND: The Malaysian Tualang honey (TH) is not only cytotoxic to human breast cancer cell lines but it has recently been reported to promote the anticancer activity induced by tamoxifen in MCF-7 and MDA-MB-231 cells suggesting its potential as an adjuvant for the chemotherapeutic agent. However, tamoxifen produces adverse effects that could be due to its ability to induce cellular DNA damage. Therefore, the study is undertaken to determine the possible modulation of the activity of 4-hydroxytamoxifen (OHT), an active metabolite of tamoxifen, by TH in non-cancerous epithelial cell line, MCF-10A, in comparison with MCF-7 cells. METHODS: MCF-7 and MCF-10A cells were treated with TH, OHT or the combination of both and cytotoxicity and antiproliferative activity were determined using LDH and MTT assays, respectively. The effect on cellular DNA integrity was analysed by comet assay and the expression of DNA repair enzymes was determined by Western blotting. RESULTS: OHT exposure was cytotoxic to both cell lines whereas TH was cytotoxic to MCF-7 cells only. TH also significantly decreased the cytotoxic effect of OHT in MCF-10A but not in MCF-7 cells. TH induced proliferation of MCF10A cells but OHT caused growth inhibition that was abrogated by the concomitant treatment with TH. While TH enhanced the OHT-induced DNA damage in the cancer cells, it dampened the genotoxic effect of OHT in the non-cancerous cells. This was supported by the increased expression of DNA repair proteins, Ku70 and Ku80, in MCF-10A cells by TH. CONCLUSION: The findings indicate that TH could afford protection of non-cancerous cells from the toxic effects of tamoxifen by increasing the efficiency of DNA repair mechanism in these cells.


Asunto(s)
Antineoplásicos/efectos adversos , Neoplasias de la Mama/tratamiento farmacológico , Daño del ADN , Reparación del ADN/efectos de los fármacos , Miel , Tamoxifeno/análogos & derivados , Antineoplásicos/uso terapéutico , Línea Celular , Línea Celular Tumoral , Ensayo Cometa , Fabaceae , Femenino , Humanos , Células MCF-7 , Malasia , Tamoxifeno/efectos adversos , Tamoxifeno/uso terapéutico
9.
BMC Complement Altern Med ; 14: 252, 2014 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-25034326

RESUMEN

BACKGROUND: Development of tumour resistance to chemotherapeutic drugs and concerns over their toxic effects has led to the increased use of medicinal herbs or natural products by cancer patients. Strobilanthes crispus is a traditional remedy for many ailments including cancer. Its purported anticancer effects have led to the commercialization of the plant leaves as medicinal herbal tea, although the scientific basis for its use has not been established. We previously reported that a bioactive subfraction of Strobilanthes crispus leaves (SCS) exhibit potent cytotoxic activity against human breast cancer cell lines. The current study investigates the effect of this subfraction on cell death activities induced by the antiestrogen drug, tamoxifen, in estrogen receptor-responsive and nonresponsive breast cancer cells. METHODS: Cytotoxic activity of SCS and tamoxifen in MCF-7 and MDA-MB-231 human breast cancer cells was determined using lactate dehydrogenase release assay and synergism was evaluated using the CalcuSyn software. Apoptosis was quantified by flow cytometry following Annexin V and propidium iodide staining. Cells were also stained with JC-1 dye to determine changes in the mitochondrial membrane potential. Fluorescence imaging using FAM-FLICA assay detects caspase-8 and caspase-9 activities. DNA damage in the non-malignant breast epithelial cell line, MCF-10A, was evaluated using Comet assay. RESULTS: The combined SCS and tamoxifen treatment displayed strong synergistic inhibition of MCF-7 and MDA-MB-231 cell growth at low doses of the antiestrogen. SCS further promoted the tamoxifen-induced apoptosis that was associated with modulation of mitochondrial membrane potential and activation of caspase-8 and caspase-9, suggesting the involvement of intrinsic and extrinsic signaling pathways. Interestingly, the non-malignant MCF-10A cells displayed no cytotoxicity or DNA damage when treated with either SCS or SCS-tamoxifen combination. CONCLUSIONS: The combined use of SCS and lower tamoxifen dose could potentially reduce the side effects/toxicity of the drug. However, further studies are needed to determine the effectiveness and safety of the combination treatment in vivo.


Asunto(s)
Acanthaceae/química , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Extractos Vegetales/farmacología , Tamoxifeno/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/química , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/patología , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Sinergismo Farmacológico , Femenino , Humanos , Células MCF-7 , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Extractos Vegetales/administración & dosificación , Extractos Vegetales/química , Tamoxifeno/administración & dosificación
10.
Sci Rep ; 14(1): 3968, 2024 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-38368470

RESUMEN

Horseshoe crabs are among the most studied invertebrates due to their unique, innate immune system and biological processes. The metabolomics study was conducted on lipopolysaccharide (LPS)-stimulated and non-stimulated hemocytes isolated from the Malaysian Tachypleus gigas and Carcinoscorpius rotundicauda. LC-TOF-MS, multivariate analyses, principal component analysis (PCA), and partial least squares-discriminant analysis (PLS-DA) were included in this study to profile the metabolites. A total of 37 metabolites were identified to be differentially abundant and were selected based on VIP > 1. However, of the 37 putative metabolites, only 23 were found to be significant with ANOVA at p < 0.05. The metabolites were identified using several databases, and the literature review of the metabolites was reported in the manuscript. Thus, this study has provided further insights into the putative metabolites' presence in the hemocytes of horseshoe crabs that are stimulated and non-stimulated with LPS and their abundance in each species. Several putative metabolites showed they have medicinal values from previous studies.


Asunto(s)
Cangrejos Herradura , Lipopolisacáridos , Animales , Hemocitos , Cangrejos Herradura/inmunología , Cangrejos Herradura/metabolismo , Lipopolisacáridos/farmacología
11.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-37259304

RESUMEN

An active fraction of S. crispus, F3, and its bioactive compounds (lutein, ß-sitosterol, and stigmasterol) were reported to have anti-glycolytic activities in MDA-MB-231 cells. Since glycolysis can also regulate metastatic activities in cancer cells, this study investigated the mechanism underlying the anti-glycolytic and anti-metastatic activities induced by F3 and its bioactive compounds on MDA-MB-231 cells. The cells were treated with IC50 concentrations of F3, lutein, ß-sitosterol, and stigmasterol. GLUT1 protein expression and localization were then observed using a fluorescence microscope. We found that F3, lutein, and ß-sitosterol inhibit localization of GLUT1 to the cell membrane, which causes the decrease in glucose uptake. This is supported by a reduction in PKC activity, measured using a spectrophotometer, and increased TXNIP protein expression detected by Western blotting. Both TXNIP and PKC are involved in GLUT1 activation and localization. The expression of signaling proteins involved in the PI3K/AKT pathway was also measured using a flow cytometer. Results show that F3, lutein, ß-sitosterol, and stigmasterol reduced the expression of AKT, pAKT, mTOR, and HIF1α in MDA-MB-231 cells. Transwell migration assay was used to measure migration of the MDA-MB-231 cells. A reduction in fibronectin protein expression was observed by fluorescence microscopy, after treatments with F3 and its bioactive compounds, leading to a reduction in the MDA-MB-231 cells' migratory abilities. As a conclusion, F3 acts as a metabolic inhibitor by inhibiting metabolic rewiring in the promotion of cancer metastasis, potentially due to the presence of its bioactive compounds.

12.
Biomedicines ; 11(2)2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36831061

RESUMEN

Breast carcinoma is the most common cancer of women in Malaysia. The most common sites of metastasis are the lung, liver, bone and brain. A 45-year-old lady was diagnosed with left invasive breast carcinoma stage IV (T4cN1M1) with axillary lymph nodes and lung metastasis. She was noted to have a cervical mass through imaging, and biopsy showed CIN III. Post chemotherapy, the patient underwent left simple mastectomy with examination under anaesthesia of the cervix, cystoscopy and staging. The cervical histopathological examination (HPE) showed squamous cell carcinoma, and clinical staging was 2A. The breast tissue HPE showed invasive carcinoma with triple receptors positivity. The patient was given tamoxifen and put on concurrent chemoradiotherapy (CCRT) for the cervical cancer. The management of each pathology of this patient involved a multi-disciplinary team that included surgeons, oncologists, gynaecologists, pathologists and radiologists. Due to the complexity of the case with two concurrent cancers, the gene expression profiles may help predict the patient's clinical outcome.

13.
Clin Dev Immunol ; 2012: 849195, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22548115

RESUMEN

Given their roles in immune regulation, the expression of the nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) 1 and 2 isoforms was investigated in human naïve (CD45RA+) and memory (CD45RO+) CD4+ T cells. Stimulation of both types of cells via the CD3/CD28 pathway resulted in high expression of both PPARγ receptors as measured by real-time PCR. Treatment with the PPARγ agonist, ciglitazone, increased PPARγ1 expression but decreased PPARγ2 expression in stimulated naïve and memory cells. Furthermore, when present, the magnitude of both PPARγ receptors expression was lower in naïve cells, perhaps suggesting a lower regulatory control of these cells. Similar profiles of selected proinflammatory cytokines were expressed by the two cell types following stimulation. The induction of PPARγ1 and suppression of PPARγ2 expressions in naïve and memory CD4+ T cells in the presence of ciglitazone suggest that the PPARγ subtypes may have different roles in the regulation of T-cell function.


Asunto(s)
Linfocitos T CD4-Positivos/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Hipoglucemiantes/farmacología , PPAR gamma/agonistas , PPAR gamma/antagonistas & inhibidores , ARN Mensajero/biosíntesis , Tiazolidinedionas/farmacología , Antígenos CD/inmunología , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/inmunología , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Regulación de la Expresión Génica/inmunología , Humanos , Memoria Inmunológica , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/inmunología , Microesferas , PPAR gamma/genética , PPAR gamma/inmunología , ARN Mensajero/inmunología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología
14.
Eur J Drug Metab Pharmacokinet ; 47(3): 431-440, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35146636

RESUMEN

BACKGROUND AND OBJECTIVE: Strobilanthes crispus Blume sub-fraction (F3) has been reported to be cytotoxic against cancer cells and to cause murine mammary tumor regression. Potential utilization of F3 as an adjuvant in breast cancer treatment to alleviate chemotherapeutic drug resistance is currently hampered by potential cytochrome P450 (CYP)-mediated herb-drug interactions (HDIs). The current study assessed the inhibitory potency of F3 towards five CYP enzymes involved in tamoxifen metabolism. METHODS: Potential CYP inhibition by F3 was first determined using fluorescence assays, using known CYP inhibitors as reference. To further ascertain the inhibitory potency and mode of inhibition, high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analysis of specific metabolites of a CYP probe substrate was conducted. RESULTS: The half-maximal inhibitory concentration (IC50) values indicate that F3 exhibited relatively weak inhibition on CYP2B6, CYP2C19, CYP2D6, and CYP3A4. Highest susceptibility to inhibition by F3 was observed for CYP2C9, where the IC50 value from fluorescence-based assay was 35-fold higher than control. Further analysis by HPLC-MS/MS revealed relatively weak mixed-type inhibition of F3 on CYP2C9, as indicated by IC50 and inhibition constant (KI) values. The risk of clinically significant CYP2C9 inhibition by F3 was then predicted based on the attained KI value and the presumed amount of F3 absorbed from S. crispus leaves following consumption. The calculated maximum plasma concentration to inhibition constant Cmax/KI) ratio suggests that F3 consumption could potentially result in clinically significant drug interactions with medications metabolized by CYP2C9. CONCLUSION: Taken together, the results revealed a low probability of inhibition by F3 on CYP enzymes involved in tamoxifen metabolism. However, further in vivo investigation is necessary for potential F3 interaction with CYP2C9. The utility of a preliminary in vitro approach in the assessment of potential HDI was demonstrated in this study.


Asunto(s)
Interacciones de Hierba-Droga , Microsomas Hepáticos , Animales , Citocromo P-450 CYP2C9/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Ratones , Microsomas Hepáticos/metabolismo , Tamoxifeno/metabolismo , Tamoxifeno/farmacología , Espectrometría de Masas en Tándem
15.
J Ethnopharmacol ; 296: 115406, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-35659627

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: R-tab, H-tab and E-cap botanical products are used for the treatment of various ailments. R-tab is traditionally prescribed for improving urination, H-tab is for relieving piles, hemorrhoids, fissures, and rectal inflammation and E-cap is for regulating menstruation. AIMS OF THE STUDY: To extract the botanical products and determine their potential interaction with the cytochrome P450 (CYP1A2, CYP2D6 and CYP3A4) enzymes. MATERIALS AND METHODS: R-tab, H-tab and E-cap botanical products were first extracted using solvents and analyzed using HPLC and LC-MS/MS. The effects of methanol extracts on the cytochrome induction and inhibition activities were determined using a series of in vitro assays, including multiplex RT-qPCR, CYP activity assays (P450-Glo™) and LC-MS/MS-based assays. For the CYP induction assay, omeprazole, rifampicin and dexamethasone were used as CYP1A2, CYP2D6 and CYP3A4 inducers, respectively. Ketoconazole and acetaminophen were used as positive and negative controls for the CYP3A4 inhibition assay, whereas furafylline and ketoconazole were used as positive and negative controls for the CYP1A2 inhibition assay. RESULTS: All three botanical products did not show any significant induction in CYP1A2, CYP2D6 and CYP3A4 mRNA expression. By contrast, R-tab inhibited the mRNA expression of CYP1A2 significantly from the lowest concentration of 0.01 µg/mL, while, H-tab inhibited the mRNA expression of CYP1A2 and CYP3A4 from 0.1 µg/mL. Based on the P450 Glo assays, E-cap extract inhibited the metabolic activity of CYP1A2 with an IC50 value of 37.24 µg/mL. On the other hand, R-tab, H-tab and E-cap showed inhibitory effects on the CYP3A4 enzymatic activity with IC50 values of 17.42, 18.20 and 20.60 µg/mL, respectively. However, using the LC-MS/MS-based methods, the concentration-dependent effects of R-tab and H-tab extracts on the metabolism of testosterone appeared to be more prominent, with IC50 values of 51.90 and 56.90 µg/mL as compared with the rest of the results, which were all above 100 µg/mL CONCLUSION: The CYP3A4 mRNA and enzymatic activity were moderately inhibited by R-tab and H-tab. Methanol extract of botanical products in solid dosage forms can be evaluated for their herb-drug interaction risks using in vitro assays and may provide the minimum data required for safety labeling.


Asunto(s)
Citocromo P-450 CYP1A2 , Citocromo P-450 CYP3A , Cromatografía Liquida , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Cetoconazol , Metanol , Microsomas Hepáticos/metabolismo , Extractos Vegetales/farmacología , ARN Mensajero/metabolismo , Espectrometría de Masas en Tándem
16.
PLoS One ; 17(8): e0271203, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35972917

RESUMEN

Plant-based anticancer agents have the potential to stimulate the immune system to act against cancer cells. A standardized bioactive subfraction of the Malaysian herb, Strobilanthes crispus (L.) Blume (S. crispus) termed F3, demonstrates strong anticancer effects in both in vitro and in vivo models. The anticancer effects might be attributable to its immunomodulatory properties as S. crispus has been traditionally used to enhance the immune system. The current study examined whether F3 could stimulate anti-tumorigenic immunogenicity against 4T1 cells in vitro and in 4T1 cell-induced mammary carcinoma mouse model. We observed that F3 induced significant increase in MHC class I and class II molecules. CD4+, CD8+ and IL-2+ (p<0.05 for all) cells infiltration was also significantly increased in the breast tumor microenvironment of F3-treated mice compared with the tumors of untreated mice. The number of CD68+ macrophages was significantly lower in F3-treated mice. We conclude that the antitumor and antimetastatic effects of S. crispus involve strong infiltration of T cells in breast cancer potentially through increased tumor antigen presentation via MHC proteins, as well as reduction of infiltrating tumor-associated macrophages.


Asunto(s)
Acanthaceae , Antineoplásicos , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Ratones , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
17.
MethodsX ; 9: 101827, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36081487

RESUMEN

The data presented in this article are related to the research article entitled "Cytochrome P450 inhibition activities of non-standardized botanical products" [1], in which the possible CYP inhibitory properties of botanical products were investigated. This article describes the optimization and bioanalytical method validation of the CYP (Cytochrome P450 inhibition assay) inhibition assays, namely, phenacetin O-deethylase assay, testosterone 6ß-hydroxylase assay, felodipine dehydrogenase assay and midazolam 1'-hydroxylase assay using LC-MS/MS.

18.
PLoS One ; 17(8): e0272799, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35947629

RESUMEN

Horseshoe crabs are one of the most studied invertebrates due to their remarkable innate immunity mechanism and biological processes. In this work, the proteins of the lipopolysaccharides (LPS)-stimulated and non-stimulated hemocytes of Malaysian Tachypleus gigas were profiled using LC-MS/MS. A total of 154 proteins were identified in both types of samples. Additionally, seventy-seven proteins were commonly found in both conditions, while 52 and 25 proteins were uniquely found in the LPS-stimulated and non-stimulated hemocytes, respectively. ATP-dependent energy-generating proteins such as actins and BLTX actin-related proteins were detected in both stimulated and non-stimulated T. gigas hemocytes, but more of such proteins were found in the former type. Proteins such as tachylectin-2, coagulogen, c-reactive proteins, histones, hemocyanin, and DNA polymerase, which play key roles in the organism's innate immunity, were differentially expressed in the hemocytes following LPS challenge. In conclusion, the proteins identified in the hemolymph of T. gigas are vital for the organism's molecular functions, biological processes, and activation of innate immunity.


Asunto(s)
Fenómenos Biológicos , Cangrejos Herradura , Animales , Cromatografía Liquida , Hemocitos/metabolismo , Inmunidad Innata , Lipopolisacáridos/metabolismo , Proteómica , Espectrometría de Masas en Tándem
19.
Asian Pac J Cancer Prev ; 23(9): 2953-2964, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36172657

RESUMEN

BACKGROUND: Detectable neonatal Nav1.5 (nNav1.5) expression in tumour breast tissue positive for lymph node metastasis and triple-negative subtype serves as a valid tumour-associated antigen to target and prevent breast cancer invasion and metastasis. Therapeutic antibodies against tumour antigens have become the predominant class of new drugs in cancer therapy because of their fewer adverse effects and high specificity. OBJECTIVE: This study was designed to investigate the therapeutic and anti-metastatic potential of the two newly obtained anti-nNav1.5 antibodies, polyclonal anti-nNav1.5 (pAb-nNav1.5) and monoclonal anti-nNav1.5 (mAb-nNav1.5), on breast cancer invasion and metastasis. METHODS: MDA-MB-231 and 4T1 cells were used as in vitro models to study the effect of pAb-nNav1.5 (59.2 µg/ml) and mAb-nNav1.5 (10 µg/ml) (24 hours treatment) on cell invasion. 4T1-induced mammary tumours in BALB/c female mice were used as an in vivo model to study the effect of a single dose of intravenous pAb-nNav1.5 (1 mg/ml) and mAb-nNav1.5 (1 mg/ml) on the occurrence of metastasis. Real-time PCR and immunofluorescence staining were conducted to assess the effect of antibody treatment on nNav1.5 mRNA and protein expression, respectively. The animals' body weight, organs, lesions, and tumour mass were also measured and compared. RESULTS: pAb-nNav1.5 and mAb-nNav1.5 treatments effectively suppressed the invasion of MDA-MB-231 and 4T1 cells in the 3D spheroid invasion assay. Both antibodies significantly reduced nNav1.5 gene and protein expression in these cell lines. Treatment with pAb-nNav1.5 and mAb-nNav1.5 successfully reduced mammary tumour tissue size and mass and prevented lesions in vital organs of the mammary tumour animal model whilst maintaining the animal's healthy weight. mRNA expression of nNav1.5 in mammary tumour tissues was only reduced by mAb-nNav1.5. CONCLUSION: Overall, this work verifies the uniqueness of targeting nNav1.5 in breast cancer invasion and metastasis prevention, but more importantly, humanised versions of mAb-nNav1.5 may be valuable passive immunotherapeutic agents to target nNav1.5 in breast cancer.


Asunto(s)
Antígenos de Neoplasias , Canal de Sodio Activado por Voltaje NAV1.5 , Animales , Línea Celular Tumoral , Movimiento Celular , Femenino , Ratones , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Metástasis de la Neoplasia , ARN Mensajero/genética
20.
Front Oncol ; 11: 624742, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33718188

RESUMEN

Decitabine and guadecitabine are hypomethylating agents (HMAs) that exert inhibitory effects against cancer cells. This includes stimulation of anti-tumor immunity in acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) patients. Treatment of AML and MDS patients with the HMAs confers upregulation of cancer/testis antigens (CTAs) expression including the highly immunogenic CTA NY-ESO-1. This leads to activation of CD4+ and CD8+ T cells for elimination of cancer cells, and it establishes the feasibility to combine cancer vaccine with HMAs to enhance vaccine immunogenicity. Moreover, decitabine and guadecitabine induce the expression of immune checkpoint molecules in AML cells. In this review, the accumulating knowledge on the immunopotentiating properties of decitabine and guadecitabine in AML and MDS patients are presented and discussed. In summary, combination of decitabine or guadecitabine with NY-ESO-1 vaccine enhances vaccine immunogenicity in AML patients. T cells from AML patients stimulated with dendritic cell (DC)/AML fusion vaccine and guadecitabine display increased capacity to lyse AML cells. Moreover, decitabine enhances NK cell-mediated cytotoxicity or CD123-specific chimeric antigen receptor-engineered T cells antileukemic activities against AML. Furthermore, combination of either HMAs with immune checkpoint blockade (ICB) therapy may circumvent their resistance. Finally, clinical trials of either HMAs combined with cancer vaccines, NK cell infusion or ICB therapy in relapsed/refractory AML and high-risk MDS patients are currently underway, highlighting the promising efficacy of HMAs and immunotherapy synergy against these malignancies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA