RESUMEN
Cadmium (Cd) is a heavy metal of considerable toxicity with destructive impacts on plants, microbes and environments. Its toxicity is due to mishandling and manual hazards in plants and is primarily observed within the soil to cause decline of plants and microbial activity inside the rhizosphere. Cadmium accumulation in crops and the probability of Cd entering the food chain are grave for public health in the worldwide. Cadmium toxicity leads to depletion in seed germination, initial seedling growth, plant biomass, chlorosis, necrosis, hindrance of photosynthetic machinery and other physiological and biological activities in plants. Cadmium triggers the reactive oxygen species (ROS) that influences gene mutation and DNA damage that affects the cell cycle and cell division. Cd toxicity altered the levels of phenolic compounds, carbohydrates, glycine betaine, proline and organic acids in crops. Under stress conditions, the plant growth promoting rhizobacteria (PGPR) have various properties such as enzymatic activities, plant growth hormones production, phosphate solubilization, siderophores production and chelating agents that help the plants tolerate against Cd stress and also increase phenolic compound levels and osmolytes. Hence, this review highlights the crucial role of cadmium tolerant PGPR for crop production, declining metal phytoavailability and enhancing morphological and physiological boundaries of plants under stress conditions. It could be an environment friendly and cost effective technology under sustainable crop production.