Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Planta ; 239(2): 421-35, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24463932

RESUMEN

Warming, watering and elevated atmospheric CO2-concentration effects have been extensively studied separately; however, their combined impact on plants is not well understood. In the current research, we examined plant growth and physiological responses of three dominant species from the Eurasian Steppe with different functional traits to a combination of elevated CO2, high temperature, and four simulated precipitation patterns. Elevated CO2 stimulated plant growth by 10.8-41.7 % for a C3 leguminous shrub, Caragana microphylla, and by 33.2-52.3 % for a C3 grass, Stipa grandis, across all temperature and watering treatments. Elevated CO2, however, did not affect plant biomass of a C4 grass, Cleistogenes squarrosa, under normal or increased precipitation, whereas a 20.0-69.7 % stimulation of growth occurred with elevated CO2 under drought conditions. Plant growth was enhanced in the C3 shrub and the C4 grass by warming under normal precipitation, but declined drastically with severe drought. The effects of elevated CO2 on leaf traits, biomass allocation and photosynthetic potential were remarkably species-dependent. Suppression of photosynthetic activity, and enhancement of cell peroxidation by a combination of warming and severe drought, were partly alleviated by elevated CO2. The relationships between plant functional traits and physiological activities and their responses to climate change were discussed. The present results suggested that the response to CO2 enrichment may strongly depend on the response of specific species under varying patterns of precipitation, with or without warming, highlighting that individual species and multifactor dependencies must be considered in a projection of terrestrial ecosystem response to climatic change.


Asunto(s)
Dióxido de Carbono/farmacología , Fotosíntesis/fisiología , Transpiración de Plantas/fisiología , Poaceae/efectos de los fármacos , Poaceae/fisiología , Biomasa , Caragana/anatomía & histología , Caragana/efectos de los fármacos , Caragana/crecimiento & desarrollo , Caragana/fisiología , China , Cambio Climático , Sequías , Ecosistema , Malondialdehído/análisis , Nitrógeno/farmacología , Oxidación-Reducción , Fenotipo , Hojas de la Planta/anatomía & histología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Brotes de la Planta/anatomía & histología , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/fisiología , Estomas de Plantas/anatomía & histología , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/crecimiento & desarrollo , Estomas de Plantas/fisiología , Poaceae/anatomía & histología , Poaceae/crecimiento & desarrollo , Lluvia , Especificidad de la Especie , Temperatura
2.
Glob Chang Biol ; 19(4): 1114-25, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23504889

RESUMEN

Temperature sensitivity of soil organic matter (SOM) decomposition may have a significant impact on global warming. Enzyme-kinetic hypothesis suggests that decomposition of low-quality substrate (recalcitrant molecular structure) requires higher activation energy and thus has greater temperature sensitivity than that of high-quality, labile substrate. Supporting evidence, however, relies largely on indirect indices of substrate quality. Furthermore, the enzyme-substrate reactions that drive decomposition may be regulated by microbial physiology and/or constrained by protective effects of soil mineral matrix. We thus tested the kinetic hypothesis by directly assessing the carbon molecular structure of low-density fraction (LF) which represents readily accessible, mineral-free SOM pool. Using five mineral soil samples of contrasting SOM concentrations, we conducted 30-days incubations (15, 25, and 35 °C) to measure microbial respiration and quantified easily soluble C as well as microbial biomass C pools before and after the incubations. Carbon structure of LFs (<1.6 and 1.6-1.8 g cm(-3) ) and bulk soil was measured by solid-state (13) C-NMR. Decomposition Q10 was significantly correlated with the abundance of aromatic plus alkyl-C relative to O-alkyl-C groups in LFs but not in bulk soil fraction or with the indirect C quality indices based on microbial respiration or biomass. The warming did not significantly change the concentration of biomass C or the three types of soluble C despite two- to three-fold increase in respiration. Thus, enhanced microbial maintenance respiration (reduced C-use efficiency) especially in the soils rich in recalcitrant LF might lead to the apparent equilibrium between SOM solubilization and microbial C uptake. Our results showed physical fractionation coupled with direct assessment of molecular structure as an effective approach and supported the enzyme-kinetic interpretation of widely observed C quality-temperature relationship for short-term decomposition. Factors controlling long-term decomposition Q10 are more complex due to protective effect of mineral matrix and thus remain as a central question.


Asunto(s)
Microbiología del Suelo , Suelo , Temperatura , Espectroscopía de Resonancia Magnética , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA