Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 20(35): 22980-22986, 2018 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-30156221

RESUMEN

The binary mixture based on the protic ionic liquid (PIL) ethylimidazolium triflate (C2HImTfO) and the diol compound ethylene glycol (EG) has been investigated in the whole composition range from pure PIL to pure EG. At 30 °C the addition of EG increases both the ionic conductivity and the self-diffusivity of the ions. These quantities, however, change at different rates suggesting that the ionicity of the system is composition dependent. This behaviour is explained by means of new intermolecular forces established when a second compound like EG is introduced into the ionic network. More specifically, a complex H-bonded network is formed that involves the -NH group of the cation, the -OH group of EG and the -SO3 group of the anion. This configuration may increase the fluidity of the mixture but not necessarily the ionic dissociation. Moreover, diffusion NMR results indicate the occurrence of local proton dynamics, which arise from a proton exchange between the -NH of the cation and the -OH of EG, providing the requisite for a long-range Grotthuss mechanism of proton transport.

2.
Phys Chem Chem Phys ; 20(13): 8724-8736, 2018 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-29536993

RESUMEN

This paper extends the study of the induced temperature change in the mesostructure and in the physical properties occurring in aqueous mixtures of the ionic liquid 1-ethyl-3-methyl imidazolium octyl-sulfate [EMIm][OSO4]. For some compositions, these mixtures undergo a phase transition between the liquid (isotropic in the mesoscale) and the mesomorphic state (lyotropic liquid crystalline) at about room temperature. The behavior of mixtures doped with a divalent metal sulfate was investigated in order to observe their applicability as electrolytes. Calcium sulfate salt is almost insoluble even in the 20 wt% water mixture. The magnesium salt, in contrast, can be dissolved up to concentrations of 730 ppm in the same mixture and it has a profound impact on its properties. Six aqueous mixtures (with water content from 10 wt% to 33 wt%) of [EMIm][OSO4] were saturated with magnesium sulfate salt, producing the ternary mixture [EMIm][OSO4] + H2O + MgSO4. Viscosity, density and ionic conductivity for these samples were measured from 10 °C to 90 °C. In addition, SAXS, FTIR, diffussion NMR and Raman spectroscopy of the most interesting samples have been performed, and structural data indicate a transition between a hexagonal lyotropic liquid crystalline phase below and an isotropic solution phase above room temperature. The octyl sulfate anions of the cylindrical micelles in the hexagonal phase are coordinated with water molecules through H-bonds (about four per sulfate anion), while the [EMIm] cations seem to be poorly coordinated and so free to move. Inorganic salt addition reinforces that network, increasing the phase transition temperature.

3.
Phys Chem Chem Phys ; 19(8): 5727-5736, 2017 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-27905602

RESUMEN

We report a strategy to enhance the ionic mobility in an emerging class of gels, based on robust nanoporous silica micro-particles, by chemical functionalization of the silica surface. Two very different ionic liquids are used to fill the nano-pores of silica at varying pore filling factors, namely one aprotic imidazolium based (1-methyl-3-hexylimidazolium bis(trifluoromethanesulfonyl)imide, C6C1ImTFSI), and one protic ammonium based (diethylmethylammonium methanesulfonate, DEMAOMs) ionic liquid. Both these ionic liquids display higher ionic mobility when confined in functionalized silica as compared to untreated silica nano-pores, an improvement that is more pronounced at low pore filling factors (i.e. in the nano-sized pore domains) and observed in the whole temperature window investigated (i.e. from -10 to 140 °C). Solid-state NMR, diffusion NMR and dielectric spectroscopy concomitantly demonstrate this effect. The origin of this enhancement is explained in terms of weaker intermolecular interactions and a consequent flipped-ion effect at the silica interface strongly supported by 2D solid-state NMR experiments. The possibility to significantly enhance the ionic mobility by controlling the nature of surface interactions is extremely important in the field of materials science and highlights these structurally tunable gels as promising solid-like electrolytes for use in energy relevant devices. These include, but are not limited to, Li-ion batteries and proton exchange membrane (PEM) fuel cells.

4.
Soft Matter ; 12(9): 2583-92, 2016 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-26838120

RESUMEN

Room temperature ionic liquids confined in a solid material, for example, nano-porous silica, are particularly propitious for energy related applications. The aim of this study is to probe the molecular interactions established between the protic ionic liquid diethylmethylammonium methanesulfonate (DEMA-OMs) and silica, where the latter consists of nano-porous micro-particles with pores in the size range of 10 nm. The changes in the local coordination and transport properties induced by the nano-confinement of the ionic liquid are investigated by a combination of Raman and solid-state NMR spectroscopy. In particular, one-dimensional (1D) (1)H and (29)Si and two-dimensional (2D) (29)Si{(1)H} HETOCR solid-state NMR are combined to identify the sites of interaction at the silica-ionic liquid interface. Pulsed field gradient (PFG) NMR experiments are performed to estimate the self-diffusion of both bulk and nano-confined DEMA-OMs. Complementary information on the overall coordination and interaction scheme is achieved by Raman spectroscopy. All these advanced experimental techniques are revealed to be crucial to differentiate between ionic liquid molecules residing in the inter- or intra-particle domains.

5.
Phys Chem Chem Phys ; 18(33): 23195-206, 2016 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-27499376

RESUMEN

The structure, dynamics, and phase behavior of a binary mixture based on the protic ionic liquid 1-ethylimidazolium bis(trifluoromethanesulfonyl)imide (C2HImTFSI) and imidazole are investigated by (1)H NMR spectroscopy, vibrational spectroscopy, diffusion NMR, calorimetric measurements, and molecular dynamics simulations. Particular attention is given to the nature of the H-bonds established and the consequent occurrence of the Grotthuss mechanism of proton transfer. We find that due to their structural similarity, the imidazolium cation and the imidazole molecule behave as interchangeable and competing sites of interaction for the TFSI anion. All investigated properties, that is the phase behavior, strength of ion-ion and ion-imidazole interactions, number of specific H-bonds, density, and self-diffusivity, are composition dependent and show trend changes at mole fractions of imidazole (χ) approximately equal to 0.2 and 0.5. Beyond χ = 0.8 imidazole is not miscible in C2HImTFSI at room temperature. We find that at the equimolar composition (χ ≈ 0.5) a structural transition occurs from an ionic network mainly stabilized by coulombic forces to a mixed phase held together by site specific H-bonds. The same composition also marks a steeper decrease in density and increase in diffusivity, resulting from the preference of imidazole molecules to H-bond to each other in a chain-like manner. As a result of these structural features the Grotthuss mechanism of proton transfer is less favored at the equimolar composition where H-bonds are too stable. By contrast, the Grotthuss mechanism is more pronounced in the low concentration range where imidazole acts as a base pulling the proton of the imidazolium cation. At high imidazole concentrations the contribution from the vehicular mechanism dominates.

6.
J Phys Chem B ; 119(4): 1611-22, 2015 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-25548901

RESUMEN

We report on the effect of water on local structure and phase behavior of two protic ionic liquids, C2HImTFSI and C2HImTfO. Raman and infrared spectroscopy are employed to investigate the local coordination state. We find that water interacts weakly with TFSI(-) while more specifically with TfO(-) through the -SO3 group. Additionally, we observe that upon addition of water the -NH stretching frequency does not change in C2HImTFSI, while it red-shifts in C2HImTfO, indicative of different hydrogen bonding configurations. Supported by the appearance of some additional features in the 800-1000 cm(-1) frequency range where ring out-of-plane bending (γ) modes are found, we hypothesize that in C2HImTFSI water interacts only with the cation coordinating to the ring C(2)H and the N(3)H sites, while it interacts with both cation and anion in C2HImTfO forming hydrogen bonds that involve the cationic N-H site as well as the anionic -SO3 group. These different local structures also reflect in the phase behavior investigated by DSC, which reveals a more homogeneous solution when water is added to C2HImTfO, as compared to H2O/C2HImTFSI mixtures. Finally we report that the addition of water also significantly affects both Tm and Tg.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA