Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
EMBO J ; 40(8): e105268, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33528041

RESUMEN

Mitochondrial translation dysfunction is associated with neurodegenerative and cardiovascular diseases. Cells eliminate defective mitochondria by the lysosomal machinery via autophagy. The relationship between mitochondrial translation and lysosomal function is unknown. In this study, mitochondrial translation-deficient hearts from p32-knockout mice were found to exhibit enlarged lysosomes containing lipofuscin, suggesting impaired lysosome and autolysosome function. These mice also displayed autophagic abnormalities, such as p62 accumulation and LC3 localization around broken mitochondria. The expression of genes encoding for nicotinamide adenine dinucleotide (NAD+ ) biosynthetic enzymes-Nmnat3 and Nampt-and NAD+ levels were decreased, suggesting that NAD+ is essential for maintaining lysosomal acidification. Conversely, nicotinamide mononucleotide (NMN) administration or Nmnat3 overexpression rescued lysosomal acidification. Nmnat3 gene expression is suppressed by HIF1α, a transcription factor that is stabilized by mitochondrial translation dysfunction, suggesting that HIF1α-Nmnat3-mediated NAD+ production is important for lysosomal function. The glycolytic enzymes GAPDH and PGK1 were found associated with lysosomal vesicles, and NAD+ was required for ATP production around lysosomal vesicles. Thus, we conclude that NAD+ content affected by mitochondrial dysfunction is essential for lysosomal maintenance.


Asunto(s)
Lisosomas/metabolismo , Mitocondrias Cardíacas/metabolismo , Proteínas Mitocondriales/genética , NAD/metabolismo , Animales , Células Cultivadas , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Mitocondriales/deficiencia , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo , Fosfoglicerato Quinasa/metabolismo
2.
Nucleic Acids Res ; 51(14): 7480-7495, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37439353

RESUMEN

The 3243A > G in mtDNA is a representative mutation in mitochondrial diseases. Mitochondrial protein synthesis is impaired due to decoding disorder caused by severe reduction of 5-taurinomethyluridine (τm5U) modification of the mutant mt-tRNALeu(UUR) bearing 3243A > G mutation. The 3243A > G heteroplasmy in peripheral blood reportedly decreases exponentially with age. Here, we found three cases with mild respiratory symptoms despite bearing high rate of 3243A > G mutation (>90%) in blood mtDNA. These patients had the 3290T > C haplotypic mutation in addition to 3243A > G pathogenic mutation in mt-tRNALeu(UUR) gene. We generated cybrid cells of these cases to examine the effects of the 3290T > C mutation on mitochondrial function and found that 3290T > C mutation improved mitochondrial translation, formation of respiratory chain complex, and oxygen consumption rate of pathogenic cells associated with 3243A > G mutation. We measured τm5U frequency of mt-tRNALeu(UUR) with 3243A > G mutation in the cybrids by a primer extension method assisted with chemical derivatization of τm5U, showing that hypomodification of τm5U was significantly restored by the 3290T > C haplotypic mutation. We concluded that the 3290T > C is a haplotypic mutation that suppresses respiratory deficiency of mitochondrial disease by restoring hypomodified τm5U in mt-tRNALeu(UUR) with 3243A > G mutation, implying a potential therapeutic measure for mitochondrial disease associated with pathogenic mutations in mt-tRNAs.


Asunto(s)
Síndrome MELAS , Enfermedades Mitocondriales , Humanos , Síndrome MELAS/genética , Síndrome MELAS/metabolismo , ARN de Transferencia de Leucina/metabolismo , Taurina , Haplotipos , Mutación , ADN Mitocondrial/genética , Enfermedades Mitocondriales/genética
3.
Am J Hum Genet ; 101(4): 525-538, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28942965

RESUMEN

Complement component 1 Q subcomponent-binding protein (C1QBP; also known as p32) is a multi-compartmental protein whose precise function remains unknown. It is an evolutionary conserved multifunctional protein localized primarily in the mitochondrial matrix and has roles in inflammation and infection processes, mitochondrial ribosome biogenesis, and regulation of apoptosis and nuclear transcription. It has an N-terminal mitochondrial targeting peptide that is proteolytically processed after import into the mitochondrial matrix, where it forms a homotrimeric complex organized in a doughnut-shaped structure. Although C1QBP has been reported to exert pleiotropic effects on many cellular processes, we report here four individuals from unrelated families where biallelic mutations in C1QBP cause a defect in mitochondrial energy metabolism. Infants presented with cardiomyopathy accompanied by multisystemic involvement (liver, kidney, and brain), and children and adults presented with myopathy and progressive external ophthalmoplegia. Multiple mitochondrial respiratory-chain defects, associated with the accumulation of multiple deletions of mitochondrial DNA in the later-onset myopathic cases, were identified in all affected individuals. Steady-state C1QBP levels were decreased in all individuals' samples, leading to combined respiratory-chain enzyme deficiency of complexes I, III, and IV. C1qbp-/- mouse embryonic fibroblasts (MEFs) resembled the human disease phenotype by showing multiple defects in oxidative phosphorylation (OXPHOS). Complementation with wild-type, but not mutagenized, C1qbp restored OXPHOS protein levels and mitochondrial enzyme activities in C1qbp-/- MEFs. C1QBP deficiency represents an important mitochondrial disorder associated with a clinical spectrum ranging from infantile lactic acidosis to childhood (cardio)myopathy and late-onset progressive external ophthalmoplegia.


Asunto(s)
Cardiomiopatías/genética , Proteínas Portadoras/genética , Transporte de Electrón/fisiología , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Mutación , Adulto , Edad de Inicio , Anciano , Alelos , Secuencia de Aminoácidos , Animales , Cardiomiopatías/complicaciones , Cardiomiopatías/patología , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Células Cultivadas , Preescolar , Estudios de Cohortes , ADN Mitocondrial , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Recién Nacido , Masculino , Ratones , Persona de Mediana Edad , Enfermedades Mitocondriales/complicaciones , Enfermedades Mitocondriales/patología , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Fosforilación Oxidativa , Linaje , Conformación Proteica , Homología de Secuencia , Índice de Severidad de la Enfermedad , Adulto Joven
4.
Nucleic Acids Res ; 40(19): 9717-37, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22904065

RESUMEN

p32 is an evolutionarily conserved and ubiquitously expressed multifunctional protein. Although p32 exists at diverse intra and extracellular sites, it is predominantly localized to the mitochondrial matrix near the nucleoid associated with mitochondrial transcription factor A. Nonetheless, its function in the matrix is poorly understood. Here, we determined p32 function via generation of p32-knockout mice. p32-deficient mice exhibited mid-gestation lethality associated with a severe developmental defect of the embryo. Primary embryonic fibroblasts isolated from p32-knockout embryos showed severe dysfunction of the mitochondrial respiratory chain, because of severely impaired mitochondrial protein synthesis. Recombinant p32 binds RNA, not DNA, and endogenous p32 interacts with all mitochondrial messenger RNA species in vivo. The RNA-binding ability of p32 is well correlated with the mitochondrial translation. Co-immunoprecipitation revealed the close association of p32 with the mitoribosome. We propose that p32 is required for functional mitoribosome formation to synthesize proteins within mitochondria.


Asunto(s)
Proteínas Portadoras/metabolismo , Desarrollo Fetal , Receptores de Hialuranos/fisiología , Mitocondrias/genética , Proteínas Mitocondriales/metabolismo , Biosíntesis de Proteínas , Proteínas de Unión al ARN/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Proliferación Celular , Respiración de la Célula , Células Cultivadas , ADN Mitocondrial/análisis , Fibroblastos/metabolismo , Genes Letales , Células HeLa , Humanos , Receptores de Hialuranos/genética , Potencial de la Membrana Mitocondrial , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/fisiología , ARN/metabolismo , ARN Mensajero/metabolismo , ARN Mitocondrial , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/fisiología , Ribosomas/metabolismo
5.
iScience ; 27(5): 109735, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38706843

RESUMEN

Lysosomes, the hub of metabolic signaling, are associated with various diseases and participate in autophagy by supplying nutrients to cells under nutrient starvation. However, their function and regulation under glucose starvation remain unclear and are studied herein. Under glucose starvation, lysosomal protein expression decreased, leading to the accumulation of damaged lysosomes. Subsequently, cell death occurred via ferroptosis and iron accumulation due to DMT1 degradation. GPX4, a key factor in ferroptosis inhibition located on the outer membrane of lysosomes, accumulated in lysosomes, especially under glucose starvation, to protect cells from ferroptosis. ALDOA, GAPDH, NAMPT, and PGK1 are also located on the outer membrane of lysosomes and participate in lysosomal function. These enzymes did not function effectively under glucose starvation, leading to lysosomal dysfunction and ferroptosis. These findings may facilitate the treatment of lysosomal-related diseases.

6.
Life Sci Alliance ; 7(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38719751

RESUMEN

Neurodegenerative diseases and other age-related disorders are closely associated with mitochondrial dysfunction. We previously showed that mice with neuron-specific deficiency of mitochondrial translation exhibit leukoencephalopathy because of demyelination. Reduced cholesterol metabolism has been associated with demyelinating diseases of the brain such as Alzheimer's disease. However, the molecular mechanisms involved and relevance to the pathogenesis remained unknown. In this study, we show that inhibition of mitochondrial translation significantly reduced expression of the cholesterol synthase genes and degraded their sterol-regulated transcription factor, sterol regulatory element-binding protein 2 (Srebp2). Furthermore, the phosphorylation of Pyk2 and Gsk3ß was increased in the white matter of p32cKO mice. We observed that Pyk2 inhibitors reduced the phosphorylation of Gsk3ß and that GSK3ß inhibitors suppressed degradation of the transcription factor Srebp2. The Pyk2-Gsk3ß axis is involved in the ubiquitination of Srebp2 and reduced expression of cholesterol gene. These results suggest that inhibition of mitochondrial translation may be a causative mechanism of neurodegenerative diseases of aging. Improving the mitochondrial translation or effectiveness of Gsk3ß inhibitors is a potential therapeutic strategy for leukoencephalopathy.


Asunto(s)
Colesterol , Quinasa 2 de Adhesión Focal , Glucógeno Sintasa Quinasa 3 beta , Ratones Noqueados , Mitocondrias , Biosíntesis de Proteínas , Proteína 2 de Unión a Elementos Reguladores de Esteroles , Animales , Humanos , Ratones , Colesterol/metabolismo , Quinasa 2 de Adhesión Focal/metabolismo , Quinasa 2 de Adhesión Focal/genética , Regulación de la Expresión Génica , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , Leucoencefalopatías/genética , Leucoencefalopatías/metabolismo , Mitocondrias/metabolismo , Fosforilación , Transducción de Señal/genética , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética
7.
Biosci Rep ; 44(5)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38655715

RESUMEN

Heart function is highly dependent on mitochondria, which not only produce energy but also regulate many cellular functions. Therefore, mitochondria are important therapeutic targets in heart failure. Abcb10 is a member of the ABC transporter superfamily located in the inner mitochondrial membrane and plays an important role in haemoglobin synthesis, biliverdin transport, antioxidant stress, and stabilization of the iron transporter mitoferrin-1. However, the mechanisms underlying the impairment of mitochondrial transporters in the heart remain poorly understood. Here, we generated mice with cardiomyocyte-specific loss of Abcb10. The Abcb10 knockouts exhibited progressive worsening of cardiac fibrosis, increased cardiovascular risk markers and mitochondrial structural abnormalities, suggesting that the pathology of heart failure is related to mitochondrial dysfunction. As the mitochondrial dysfunction was observed early but mildly, other factors were considered. We then observed increased Hif1α expression, decreased NAD synthase expression, and reduced NAD+ levels, leading to lysosomal dysfunction. Analysis of ABCB10 knockdown HeLa cells revealed accumulation of Fe2+ and lipid peroxides in lysosomes, leading to ferroptosis. Lipid peroxidation was suppressed by treatment with iron chelators, suggesting that lysosomal iron accumulation is involved in ferroptosis. We also observed that Abcb10 knockout cardiomyocytes exhibited increased ROS production, iron accumulation, and lysosomal hypertrophy. Our findings suggest that Abcb10 is required for the maintenance of cardiac function and reveal a novel pathophysiology of chronic heart failure related to lysosomal function and ferroptosis.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Ferroptosis , Lisosomas , Mitocondrias Cardíacas , Miocitos Cardíacos , Animales , Humanos , Ratones , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Ferroptosis/genética , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Células HeLa , Hierro/metabolismo , Peroxidación de Lípido , Lisosomas/metabolismo , Ratones Noqueados , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Mitocondrias Cardíacas/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Especies Reactivas de Oxígeno/metabolismo
8.
Life Sci Alliance ; 7(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38664021

RESUMEN

Mitochondrial transcription factor A, TFAM, is essential for mitochondrial function. We examined the effects of overexpressing the TFAM gene in mice. Two types of transgenic mice were created: TFAM heterozygous (TFAM Tg) and homozygous (TFAM Tg/Tg) mice. TFAM Tg/Tg mice were smaller and leaner notably with longer lifespans. In skeletal muscle, TFAM overexpression changed gene and protein expression in mitochondrial respiratory chain complexes, with down-regulation in complexes 1, 3, and 4 and up-regulation in complexes 2 and 5. The iMPAQT analysis combined with metabolomics was able to clearly separate the metabolomic features of the three types of mice, with increased degradation of fatty acids and branched-chain amino acids and decreased glycolysis in homozygotes. Consistent with these observations, comprehensive gene expression analysis revealed signs of mitochondrial stress, with elevation of genes associated with the integrated and mitochondrial stress responses, including Atf4, Fgf21, and Gdf15. These found that mitohormesis develops and metabolic shifts in skeletal muscle occur as an adaptive strategy.


Asunto(s)
Proteínas de Unión al ADN , Proteínas del Grupo de Alta Movilidad , Longevidad , Ratones Transgénicos , Proteínas Mitocondriales , Músculo Esquelético , Factores de Transcripción , Animales , Ratones , Músculo Esquelético/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Longevidad/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mitocondrias/metabolismo , Mitocondrias/genética , Masculino , Metabolómica/métodos , Factor 15 de Diferenciación de Crecimiento/genética , Factor 15 de Diferenciación de Crecimiento/metabolismo , Regulación de la Expresión Génica
9.
Biochim Biophys Acta ; 1818(3): 658-65, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22155194

RESUMEN

In our previous paper, we demonstrated that Arg 901 in the C-terminal tail of human AE1 (band 3, anion exchanger 1) had a functional role in conformational change during anion exchange. To further examine how Arg 901 is involved in conformational change, we expressed various Arg 901 mutants and alanine mutants of the C-terminal tail (from Leu 886 to Val 911) on the plasma membrane of Saccharomyces cerevisiae and evaluated the kinetic parameters of sulfate ion transport. As a result, Vmax decreased as the hydrophobicities of the 901st and peripheral hydrophilic residues increased, indicating that the hydrophobicity of the C-terminal residue is involved in the conformational change. We also found the alkali and protease resistance of the C-terminal region after Arg 901 modification with hydroxyphenylglyoxal (HPG) or phenylglyoxal (PG), a hydrophobic reagent. These results suggested that the increased hydrophobicity of the C-terminal region around Arg 901 leads to inefficient conformational change by the newly produced hydrophobic interaction.


Asunto(s)
Proteína 1 de Intercambio de Anión de Eritrocito/metabolismo , Arginina/metabolismo , Membrana Celular/metabolismo , Proteína 1 de Intercambio de Anión de Eritrocito/química , Proteína 1 de Intercambio de Anión de Eritrocito/genética , Arginina/química , Arginina/genética , Membrana Celular/química , Membrana Celular/genética , Expresión Génica , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Transporte Iónico/fisiología , Cinética , Unión Proteica/fisiología , Estructura Terciaria de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae
10.
Hepatol Res ; 43(5): 569-75, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23045960

RESUMEN

Dubin-Johnson syndrome (DJS) is a recessive inherited disorder characterized by conjugated hyperbilirubinemia. It is caused by dysfunction of adenosine triphosphate-binding cassette, sub-family C, member 2 (ABCC2/MRP2) on the canalicular membrane of hepatocytes. We performed mutational analysis of the ABCC2/MRP2 gene in a Japanese female with DJS. Furthermore, we investigated the effects of the two identified DJS-associated mutations on MRP2 function. We found a compound heterozygous mutation in the patient: W709R (c.2124T>C), a missense mutation in exon 17, and R1310X (c.3928C>T), a nonsense mutation in exon 28. DJS-associated mutations have been shown to impair the protein maturation and transport activity of ABCC2/MRP2. We established HEK293 cell lines stably expressing one of the two identified DJS-associated mutations. Expressed W709R MRP2 was mainly core-glycosylated, predominantly retained in the endoplasmic reticulum, and exhibited no transport activity, suggesting that this mutation causes deficient maturation and impaired protein sorting. No MRP2 protein was expressed from HEK293 cells transfected with an R1310X-containing construct. This compound heterozygous mutation of the MRP2 gene causes dysfunction of the MRP2 protein and the hyperbilirubinemia seen in DJS.

11.
Biochem J ; 443(2): 573-84, 2012 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-22280412

RESUMEN

Mitochondria play key roles in essential cellular functions, such as energy production, metabolic pathways and aging. Growth factor-mediated expression of the mitochondrial OXPHOS (oxidative phosphorylation) complex proteins has been proposed to play a fundamental role in metabolic homoeostasis. Although protein translation is affected by general RNA-binding proteins, very little is known about the mechanism involved in mitochondrial OXPHOS protein translation. In the present study, serum stimulation induced nuclear-encoded OXPHOS protein expression, such as NDUFA9 [NADH dehydrogenase (ubiquinone) 1α subcomplex, 9, 39 kDa], NDUFB8 [NADH dehydrogenase (ubiquinone) 1ß subcomplex, 8, 19 kDa], SDHB [succinate dehydrogenase complex, subunit B, iron sulfur (Ip)] and UQCRFS1 (ubiquinol-cytochrome c reductase, Rieske iron-sulfur polypeptide 1), and mitochondrial ATP production, in a translation-dependent manner. We also observed that the major ribonucleoprotein YB-1 (Y-box-binding protein-1) preferentially bound to these OXPHOS mRNAs and regulated the recruitment of mRNAs from inactive mRNPs (messenger ribonucleoprotein particles) to active polysomes. YB-1 depletion led to up-regulation of mitochondrial function through induction of OXPHOS protein translation from inactive mRNP release. In contrast, YB-1 overexpression suppressed the translation of these OXPHOS mRNAs through reduced polysome formation, suggesting that YB-1 regulated the translation of mitochondrial OXPHOS mRNAs through mRNA binding. Taken together, our findings suggest that YB-1 is a critical factor for translation that may control OXPHOS activity.


Asunto(s)
Mitocondrias/metabolismo , Fosfoproteínas/metabolismo , Ribonucleoproteínas/metabolismo , Suero/química , Proteína 1 de Unión a la Caja Y/metabolismo , Adenosina Trifosfato/metabolismo , Células HeLa , Humanos , Oxidación-Reducción , Unión Proteica , Biosíntesis de Proteínas , ARN Mensajero/genética , Regulación hacia Arriba
12.
Sci Rep ; 13(1): 10497, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37380755

RESUMEN

Glioblastoma, a malignant tumor, has no curative treatment. Recently, mitochondria have been considered a potential target for treating glioblastoma. Previously, we reported that agents initiating mitochondrial dysfunction were effective under glucose-starved conditions. Therefore, this study aimed to develop a mitochondria-targeted treatment to achieve normal glucose conditions. This study used U87MG (U87), U373, and patient-derived stem-like cells as well as chloramphenicol (CAP) and 2-deoxy-D-glucose (2-DG). We investigated whether CAP and 2-DG inhibited the growth of cells under normal and high glucose concentrations. In U87 cells, 2-DG and long-term CAP administration were more effective under normal glucose than high-glucose conditions. In addition, combined CAP and 2-DG treatment was significantly effective under normal glucose concentration in both normal oxygen and hypoxic conditions; this was validated in U373 and patient-derived stem-like cells. 2-DG and CAP acted by influencing iron dynamics; however, deferoxamine inhibited the efficacy of these agents. Thus, ferroptosis could be the underlying mechanism through which 2-DG and CAP act. In conclusion, combined treatment of CAP and 2-DG drastically inhibits cell growth of glioblastoma cell lines even under normal glucose conditions; therefore, this treatment could be effective for glioblastoma patients.


Asunto(s)
Ferroptosis , Glioblastoma , Humanos , Glioblastoma/tratamiento farmacológico , Cloranfenicol/farmacología , Glucosa , Desoxiglucosa/farmacología
13.
Life Sci Alliance ; 6(12)2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37793777

RESUMEN

Myocardial mitochondria are primary sites of myocardial energy metabolism. Mitochondrial disorders are associated with various cardiac diseases. We previously showed that mice with cardiomyocyte-specific knockout of the mitochondrial translation factor p32 developed heart failure from dilated cardiomyopathy. Mitochondrial translation defects cause not only mitochondrial dysfunction but also decreased nicotinamide adenine dinucleotide (NAD+) levels, leading to impaired lysosomal acidification and autophagy. In this study, we investigated whether nicotinamide mononucleotide (NMN) administration, which compensates for decreased NAD+ levels, improves heart failure because of mitochondrial dysfunction. NMN administration reduced damaged lysosomes and improved autophagy, thereby reducing heart failure and extending the lifespan in p32cKO mice. We found that lysosomal damage due to mitochondrial dysfunction induced ferroptosis, involving the accumulation of iron in lysosomes and lipid peroxide. The ameliorative effects of NMN supplementation were found to strongly affect lysosomal function rather than mitochondrial function, particularly lysosome-mediated ferroptosis. NMN supplementation can improve lysosomal, rather than mitochondrial, function and prevent chronic heart failure.


Asunto(s)
Ferroptosis , Insuficiencia Cardíaca , Ratones , Animales , Mononucleótido de Nicotinamida/metabolismo , Mononucleótido de Nicotinamida/farmacología , NAD/metabolismo , Insuficiencia Cardíaca/prevención & control , Mitocondrias/metabolismo
14.
Cell Rep ; 42(5): 112530, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37209098

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is a chronic metabolic disorder caused by overnutrition and can lead to nonalcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC). The transcription factor Forkhead box K1 (FOXK1) is implicated in regulation of lipid metabolism downstream of mechanistic target of rapamycin complex 1 (mTORC1), but its role in NAFLD-NASH pathogenesis is understudied. Here, we show that FOXK1 mediates nutrient-dependent suppression of lipid catabolism in the liver. Hepatocyte-specific deletion of Foxk1 in mice fed a NASH-inducing diet ameliorates not only hepatic steatosis but also associated inflammation, fibrosis, and tumorigenesis, resulting in improved survival. Genome-wide transcriptomic and chromatin immunoprecipitation analyses identify several lipid metabolism-related genes, including Ppara, as direct targets of FOXK1 in the liver. Our results suggest that FOXK1 plays a key role in the regulation of hepatic lipid metabolism and that its inhibition is a promising therapeutic strategy for NAFLD-NASH, as well as for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Carcinoma Hepatocelular/metabolismo , Ácidos Grasos/metabolismo , Metabolismo de los Lípidos , Hígado/metabolismo , Neoplasias Hepáticas/patología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo
15.
Nucleic Acids Res ; 38(16): 5554-68, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20430825

RESUMEN

ERAL1, a homologue of Era protein in Escherichia coli, is a member of conserved GTP-binding proteins with RNA-binding activity. Depletion of prokaryotic Era inhibits cell division without affecting chromosome segregation. Previously, we isolated ERAL1 protein as one of proteins which were associated with mitochondrial transcription factor A by using immunoprecipitation. In this study, we analysed the localization and function of ERAL1 in mammalian cells. ERAL1 was localized in mitochondrial matrix and associated with mitoribosomal proteins including the 12S rRNA. siRNA knockdown of ERAL1 decreased mitochondrial translation, caused redistribution of ribosomal small subunits and reduced 12S rRNA. The knockdown of ERAL1 in human HeLa cells elevated mitochondrial superoxide production and slightly decreased mitochondrial membrane potential. The knockdown inhibited the growth of HeLa cells with an accumulation of apoptotic cells. These results suggest that ERAL1 is localized in a small subunit of the mitochondrial ribosome, plays an important role in the small ribosomal constitution, and is also involved in cell viability.


Asunto(s)
Proteínas de Unión al GTP/fisiología , Mitocondrias/metabolismo , Proteínas Mitocondriales/fisiología , Proteínas de Unión al ARN/fisiología , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Apoptosis , Proliferación Celular , Complejo IV de Transporte de Electrones/metabolismo , Proteínas de Unión al GTP/análisis , Proteínas de Unión al GTP/antagonistas & inhibidores , Células HeLa , Humanos , Inmunoprecipitación , Potencial de la Membrana Mitocondrial , Mitocondrias/genética , Proteínas Mitocondriales/análisis , Proteínas Mitocondriales/antagonistas & inhibidores , Biosíntesis de Proteínas , ARN/aislamiento & purificación , ARN Mitocondrial , Proteínas de Unión al ARN/análisis , Proteínas de Unión al ARN/antagonistas & inhibidores , Especies Reactivas de Oxígeno
16.
Oncogenesis ; 11(1): 59, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36195584

RESUMEN

Glioblastoma is a difficult-to-cure disease owing to its malignancy. Under normal circumstances, cancer is dependent on the glycolytic system for growth, and mitochondrial oxidative phosphorylation (OXPHOS) is not well utilized. Here, we investigated the efficacy of mitochondria-targeted glioblastoma therapy in cell lines including U87MG, LN229, U373, T98G, and two patient-derived stem-like cells. When glioblastoma cells were exposed to a glucose-starved condition (100 mg/l), they rely on mitochondrial OXPHOS for growth, and mitochondrial translation product production is enhanced. Under these circumstances, drugs that inhibit mitochondrial translation, called antimicrobial agents, can cause mitochondrial dysfunction and thus can serve as a therapeutic option for glioblastoma. Antimicrobial agents activated the nuclear factor erythroid 2-related factor 2-Kelch-like ECH-associated protein 1 pathway, resulting in increased expression of heme oxygenase-1. Accumulation of lipid peroxides resulted from the accumulation of divalent iron, and cell death occurred via ferroptosis. In conclusion, mitochondrial OXPHOS is upregulated in glioblastoma upon glucose starvation. Under this condition, antimicrobial agents cause cell death via ferroptosis. The findings hold promise for the treatment of glioblastoma.

17.
Sci Rep ; 12(1): 4056, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35260712

RESUMEN

Fetal growth restriction (FGR) and pre-eclampsia with fetal growth restriction (PE/FGR) are high-risk perinatal diseases that may involve high levels of human chorionic gonadotropin (hCG) and mitochondrial dysfunction. However, little is known about how these factors affect placental function. We investigated how mitochondrial dysfunction and high hCG expression affected placental function in unexplained FGR and PE/FGR. We observed elevated expression of hCGß and growth differentiation factor 15 mRNA and protein levels in the placenta with both diseases. Likewise, antiangiogenic factors, such as Ang2, IP10, sFlt1, IL8, IL1B, and TNFα, were also upregulated at the mRNA level. In addition, the expression of COXI and COXII which encoded by mitochondrial DNA were significantly decreased in both diseases, suggesting that mitochondrial translation was impaired. Treatment with hCG increased Ang2, IP10, IL8, and TNFα mRNA levels in a dose-dependent manner via the p38 and JNK pathways. Mitochondrial translation inhibitors increased hCGß expression through stabilization of HIF1α, and increased IL8 and TNFα mRNA expression. These results revealed that high expression of hCG due to mitochondrial translational dysfunction plays an important role in the pathogenesis of FGR and PE/FGR.


Asunto(s)
Retardo del Crecimiento Fetal , Preeclampsia , Quimiocina CXCL10/metabolismo , Gonadotropina Coriónica/metabolismo , Gonadotropina Coriónica Humana de Subunidad beta/metabolismo , Femenino , Retardo del Crecimiento Fetal/metabolismo , Humanos , Interleucina-8/genética , Interleucina-8/metabolismo , Mitocondrias/metabolismo , Placenta/metabolismo , Preeclampsia/genética , Preeclampsia/metabolismo , Embarazo , ARN Mensajero/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo
18.
iScience ; 25(9): 104889, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36046191

RESUMEN

The occurrence of diet-induced obesity has been increasing worldwide and has become a major health concern. Mitochondria are densely distributed in brown adipose tissue and are involved in lipid consumption. Therefore, increasing energy expenditure through the activation of brown adipocytes may be a potential therapy for obesity. Our findings showed that mitochondrial transcription factor A (TFAM) homozygous transgenic (TgTg) mice had highly activated brown adipocytes and increased expression of oxidative phosphorylation, leading to resistance to obesity. Transplantation models of TFAM-expressing brown adipocytes could mimic the phenotype of TFAM TgTg mice, and proving their anti-obesity effect. We found that brown adipocytes secrete exosomes which enable self-activation in an autocrine and paracrine manner. The secretion was enhanced in TFAM TgTg brown adipocytes, resulting in a higher activation. These findings may lead to a promising treatment strategy for obesity through selective stimulation of exosome secretion.

19.
Sci Rep ; 12(1): 8535, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35595780

RESUMEN

Chemotherapy is a standard therapy for muscle-invasive bladder cancer (MIBC). However, genomic alterations associated with chemotherapy sensitivity in MIBC have not been fully explored. This study aimed to investigate the genomic landscape of MIBC in association with the response to chemotherapy and to explore the biological role of genomic alterations. Genomic alterations in MIBC were sequenced by targeted exome sequencing of 409 genes. Gene expression in MIBC tissues was analyzed by western blotting, immunohistochemistry, and RNA microarray. Cellular sensitivity to gemcitabine and gemcitabine metabolite was examined in bladder cancer cells after modulation of candidate gene. Targeted exome sequencing in 20 cases with MIBC revealed various genomic alterations including pathogenic missense mutation of DPYD gene encoding dihydropyrimidine dehydrogenase (DPD). Conversely, high DPYD and DPD expression were associated with poor response to gemcitabine-containing chemotherapy among patients with MIBC, as well as gemcitabine resistance in bladder cancer cells. DPD suppression rendered cells sensitive to gemcitabine, while DPD overexpression made cells gemcitabine-resistant through reduced activity of the cytotoxic gemcitabine metabolite difluorodeoxycytidine diphosphate. This study revealed the novel role of DPD in gemcitabine metabolism. It has been suggested that DPYD genomic alterations and DPD expression are potential predictive biomarkers in gemcitabine treatment.


Asunto(s)
Desoxicitidina , Deficiencia de Dihidropirimidina Deshidrogenasa , Dihidrouracilo Deshidrogenasa (NADP) , Neoplasias de la Vejiga Urinaria , Desoxicitidina/análogos & derivados , Desoxicitidina/uso terapéutico , Deficiencia de Dihidropirimidina Deshidrogenasa/tratamiento farmacológico , Deficiencia de Dihidropirimidina Deshidrogenasa/genética , Dihidrouracilo Deshidrogenasa (NADP)/genética , Genómica/métodos , Humanos , Neoplasias de la Vejiga Urinaria/inducido químicamente , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/genética , Gemcitabina
20.
Biochim Biophys Acta ; 1798(5): 903-8, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20132789

RESUMEN

Anion exchanger 1 (AE1 or band 3) is responsible for Cl(-)-HCO3(-) exchange on erythrocyte membrane. Previously, we showed that band 3 is fixed in an inward-facing conformation by specific modification of His 834 with DEPC, resulting in a strong inhibition of its anion transport activity. To clarify the physiological role of His 834, we evaluated the sulfate transport activities of various band 3 mutants: different mutants at His 834 and alanine mutants of peripheral residues around 834 (Lys 829-Phe 836) in yeast cell membranes. The K(m) values of the His 834 mutants were 4-10 times higher than that of the wild type, while their V(max) values were barely lower than that of wild type. Meanwhile, the K(m) values of the peripheral alanine mutants were only slightly increased. These data suggest that His 834 is critically important for the efficient binding of sulfate anion, but not for the conformational change induced by substrate binding.


Asunto(s)
Proteína 1 de Intercambio de Anión de Eritrocito , Histidina/genética , Mutación , Estructura Secundaria de Proteína , Secuencia de Aminoácidos , Proteína 1 de Intercambio de Anión de Eritrocito/química , Proteína 1 de Intercambio de Anión de Eritrocito/genética , Proteína 1 de Intercambio de Anión de Eritrocito/metabolismo , Histidina/metabolismo , Humanos , Datos de Secuencia Molecular , Unión Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sulfatos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA