Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Planta ; 243(5): 1237-49, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26895338

RESUMEN

MAIN CONCLUSION: A significant number of epigenetic regulators were differentially expressed during embryogenesis at different epitype-inducing conditions. Our results support that methylation of DNA and histones, as well as sRNAs, are pivotal for the establishment of the epigenetic memory. As a forest tree species with long generation times, Norway spruce is remarkably well adapted to local environmental conditions despite having recently, from an evolutionary perspective, recolonized large areas following the last glaciation. In this species, there is an enigmatic epigenetic memory of the temperature conditions during embryogenesis that allows rapid adaptation to changing environment. We used a transcriptomic approach to investigate the molecular mechanisms underlying the formation of the epigenetic memory during somatic embryogenesis in Norway spruce. Nine mRNA libraries were prepared from three epitypes of the same genotype resulting from exposure to epitype-inducing temperatures of 18, 23 and 28 °C. RNA-Seq analysis revealed more than 10,000 differentially expressed genes (DEGs). The epitype-inducing conditions during SE were accompanied by marked transcriptomic changes for multiple gene models related to the epigenetic machinery. Out of 735 putative orthologs of epigenetic regulators, 329 were affected by the epitype-inducing temperatures and differentially expressed. The majority of DEGs among the epigenetic regulators was related to DNA and histone methylation, along with sRNA pathways and a range of putative thermosensing and signaling genes. These genes could be the main epigenetic regulators involved in formation of the epigenetic memory. We suggest considerable expansion of gene families of epigenetic regulators in Norway spruce compared to orthologous gene families in Populus and Arabidopsis. Obtained results provide a solid basis for further genome annotation and studies focusing on the importance of these candidate genes for the epigenetic memory formation.


Asunto(s)
Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Picea/genética , Semillas/genética , Cromatina/genética , Perfilación de la Expresión Génica , Biblioteca de Genes , Histonas/genética , Histonas/metabolismo , MicroARNs , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN Mensajero , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN , Transducción de Señal/genética , Temperatura , Transcriptoma
2.
Fungal Genet Biol ; 56: 17-24, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23665189

RESUMEN

The pathogenic white-rot basidiomycete Heterobasidion irregulare is able to remove lignin and hemicellulose prior to cellulose during the colonization of root and stem xylem of conifer and broadleaf trees. We identified and followed the regulation of expression of genes belonging to families encoding ligninolytic enzymes. In comparison with typical white-rot fungi, the H. irregulare genome has exclusively the short-manganese peroxidase type encoding genes (6 short-MnPs) and thereby a slight contraction in the pool of class II heme-containing peroxidases, but an expansion of the MCO laccases with 17 gene models. Furthermore, the genome shows a versatile set of other oxidoreductase genes putatively involved in lignin oxidation and conversion, including 5 glyoxal oxidases, 19 quinone-oxidoreductases and 12 aryl-alcohol oxidases. Their genetic multiplicity and gene-specific regulation patterns on cultures based on defined lignin, cellulose or Norway spruce lignocellulose substrates suggest divergent specificities and physiological roles for these enzymes. While the short-MnP encoding genes showed similar transcript levels upon fungal growth on heartwood and reaction zone (RZ), a xylem defense tissue rich in phenolic compounds unique to trees, a subset of laccases showed higher gene expression in the RZ cultures. In contrast, other oxidoreductases depending on initial MnP activity showed generally lower transcript levels on RZ than on heartwood. These data suggest that the rate of fungal oxidative conversion of xylem lignin differs between spruce RZ and heartwood. It is conceivable that in RZ part of the oxidoreductase activities of laccases are related to the detoxification of phenolic compounds involved in host-defense. Expression of the several short-MnP enzymes indicated an important role for these enzymes in effective delignification of wood by H. irregulare.


Asunto(s)
Basidiomycota/genética , Basidiomycota/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Lignina/metabolismo , Redes y Vías Metabólicas/genética , Biotransformación , Celulosa/metabolismo , Perfilación de la Expresión Génica , Hojas de la Planta/microbiología , Árboles/microbiología , Xilema/microbiología
3.
Front Plant Sci ; 14: 1170815, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37056490

RESUMEN

Plants provide not only food and feed, but also herbal medicines and various raw materials for industry. Moreover, plants can be green factories producing high value bioproducts such as biopharmaceuticals and vaccines. Advantages of plant-based production platforms include easy scale-up, cost effectiveness, and high safety as plants are not hosts for human and animal pathogens. Plant cells perform many post-translational modifications that are present in humans and animals and can be essential for biological activity of produced recombinant proteins. Stimulated by progress in plant transformation technologies, substantial efforts have been made in both the public and the private sectors to develop plant-based vaccine production platforms. Recent promising examples include plant-made vaccines against COVID-19 and Ebola. The COVIFENZ® COVID-19 vaccine produced in Nicotiana benthamiana has been approved in Canada, and several plant-made influenza vaccines have undergone clinical trials. In this review, we discuss the status of vaccine production in plants and the state of the art in downstream processing according to good manufacturing practice (GMP). We discuss different production approaches, including stable transgenic plants and transient expression technologies, and review selected applications in the area of human and veterinary vaccines. We also highlight specific challenges associated with viral vaccine production for different target organisms, including lower vertebrates (e.g., farmed fish), and discuss future perspectives for the field.

4.
BMC Plant Biol ; 12: 105, 2012 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-22776433

RESUMEN

BACKGROUND: NB-LRR resistance proteins are involved in recognizing pathogens and other exogenous stressors in plants. Resistance proteins are the first step in induced defence responses and a better understanding of their regulation is important to understand the mechanisms of plant defence. Much of the post-transcriptional regulation in plants is controlled by microRNAs (miRNA). We examined the expression of five Norway spruce miRNA that may regulate NB-LRR related transcripts in secondary phloem (bark) of resistant Norway spruce after wounding and inoculation with the necrotrophic blue stain fungus Ceratocystis polonica. RESULTS: The plants of this clone recovered from both the pathogen inoculations and wounding alone. We found local and systemic induction of the resistance marker genes PaChi4, PaPAL and PaPX3 indicative of an effective induced host defence response. There were minor local and systemic changes in the expression of five miRNAs and 21 NB-LRRs between healthy and treated plants. Only five putative NB-LRRs (PaLRR1, PaLRR3, PaLRR14, PaLRR15 and PaLRR16) showed significant increases greater than two-fold as a local response to C. polonica. Of all NB-LRRs only PaLRR3, the most highly differentially regulated NB-LRR, showed a significant increase also due to wounding. The five miRNAs showed indications of an initial local and systemic down-regulation at day 1, followed by a later increase up to and beyond the constitutive levels at day 6. However, the initial down-regulation was significant only for miR3693 and miR3705. CONCLUSIONS: Overall, local and systemic expression changes were evident only for the established resistance marker genes and PaLRR3. The minor expression changes observed both for the followed miRNAs and their predicted NB-LRR targets suggest that the expression of most NB-LRR genes are maintained close to their constitutive levels in stressed and healthy Norway spruce plants.


Asunto(s)
Ascomicetos/patogenicidad , Regulación de la Expresión Génica de las Plantas/genética , Genes de Plantas/genética , MicroARNs/genética , Picea/genética , Enfermedades de las Plantas/inmunología , Regulación hacia Abajo/genética , Interacciones Huésped-Patógeno , Micelio , Noruega , Picea/inmunología , Picea/microbiología , Corteza de la Planta/genética , Corteza de la Planta/inmunología , Corteza de la Planta/microbiología , Enfermedades de las Plantas/microbiología , Tallos de la Planta/genética , Tallos de la Planta/inmunología , Tallos de la Planta/microbiología , ARN de Planta/genética , Plantones/genética , Plantones/inmunología , Plantones/microbiología , Regulación hacia Arriba/genética , Heridas y Lesiones
5.
Plant Cell Environ ; 34(2): 332-46, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21054436

RESUMEN

The molecular basis for terminal bud formation in autumn is not well understood in conifers. By combining suppression subtractive hybridization and monitoring of gene expression by qRT-PCR analysis, we aimed to identify genes involved in photoperiodic control of growth cessation and bud set in Norway spruce. Close to 1400 ESTs were generated and their functional distribution differed between short day (SD-12 h photoperiod) and long day (LD-24 h photoperiod) libraries. Many genes with putative roles in protection against stress appeared differentially regulated under SD and LD, and also differed in transcript levels between 6 and 20 SDs. Of these, PaTFL1(TERMINAL FLOWER LIKE 1) showed strongly increased transcript levels at 6 SDs. PaCCCH(CCCH-TYPE ZINC FINGER) and PaCBF2&3(C-REPEAT BINDING FACTOR 2&3) showed a later response at 20 SDs, with increased and decreased transcript levels, respectively. For rhythmically expressed genes such as CBFs, such differences might represent a phase shift in peak expression, but might also suggest a putative role in response to SD. Multivariate analyses revealed strong differences in gene expression between LD, 6 SD and 20 SD. The robustness of the gene expression patterns was verified in 6 families differing in bud-set timing under natural light with gradually decreasing photoperiod.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Fotoperiodo , Picea/fisiología , Brotes de la Planta/fisiología , Secuencia de Bases , Oscuridad , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Biblioteca de Genes , Luz , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Picea/genética , Picea/crecimiento & desarrollo , Brotes de la Planta/crecimiento & desarrollo , Análisis de Componente Principal , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Factores de Tiempo
6.
Front Plant Sci ; 12: 718775, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34456958

RESUMEN

Aquaculture has undergone rapid development in the past decades. It provides a large part of high-quality protein food for humans, and thus, a sustainable aquaculture industry is of great importance for the worldwide food supply and economy. Along with the quick expansion of aquaculture, the high fish densities employed in fish farming increase the risks of outbreaks of a variety of aquatic diseases. Such diseases not only cause huge economic losses, but also lead to ecological hazards in terms of pathogen spread to marine ecosystems causing infection of wild fish and polluting the environment. Thus, fish health is essential for the aquaculture industry to be environmentally sustainable and a prerequisite for intensive aquaculture production globally. The wide use of antibiotics and drug residues has caused intensive pollution along with risks for food safety and increasing antimicrobial resistance. Vaccination is the most effective and environmentally friendly approach to battle infectious diseases in aquaculture with minimal ecological impact and is applicable to most species of farmed fish. However, there are only 34 fish vaccines commercially available globally to date, showing the urgent need for further development of fish vaccines to manage fish health and ensure food safety. Plant genetic engineering has been utilized to produce genetically modified crops with desirable characteristics and has also been used for vaccine production, with several advantages including cost-effectiveness, safety when compared with live virus vaccines, and plants being capable of carrying out posttranslational modifications that are similar to naturally occurring systems. So far, plant-derived vaccines, antibodies, and therapeutic proteins have been produced for human and animal health. However, the development of plant-made vaccines for animals, especially fish, is still lagging behind the development of human vaccines. The present review summarizes the development of fish vaccines currently utilized and the suitability of the plant-production platform for fish vaccine and then addresses considerations regarding fish vaccine production in plants. Developing fish vaccines by way of plant biotechnology are significant for the aquaculture industry, fish health management, food safety, and human health.

7.
New Phytol ; 187(4): 1154-1169, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20561211

RESUMEN

*Norway spruce expresses a temperature-dependent epigenetic memory from the time of embryo development, which thereafter influences the timing bud phenology. MicroRNAs (miRNAs)are endogenous small RNAs, exerting epigenetic gene regulatory impacts. We have tested for their presence and differential expression. *We prepared concatemerized small RNA libraries from seedlings of two full-sib families, originated from seeds developed in a cold and warm environment. One family expressed distinct epigenetic effects while the other not. We used available plant miRNA query sequences to search for conserved miRNAs and from the sequencing we found novel ones; the miRNAs were monitored using relative real time-PCR. *Sequencing identified 24 novel and four conserved miRNAs. Further screening of the conserved miRNAs confirmed the presence of 16 additional miRNAs. Most of the miRNAs were targeted to unknown genes. The expression of seven conserved and nine novel miRNAs showed significant differences in transcript levels in the full-sib family showing distinct epigenetic difference in bud set, but not in the nonresponding full-sib family. Putative miRNA targets were studied. *Norway spruce contains a set of conserved miRNAs as well as a large proportion of novel nonconserved miRNAs. The differentially expression of specific miRNAs indicate their putative participation in the epigenetic regulation.


Asunto(s)
Adaptación Biológica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , MicroARNs/metabolismo , Picea/genética , ARN de Planta/metabolismo , Temperatura , Secuencia de Bases , Clima , Epigénesis Genética , Meristema/crecimiento & desarrollo , Picea/fisiología , Análisis de Secuencia de ARN
8.
Sci Rep ; 10(1): 12679, 2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32728087

RESUMEN

Endogenous antimicrobial peptides (AMPs) are evolutionarily ancient factors of innate immunity, which are produced by all multicellular organisms and play a key role in their protection against infection. Red king crab (Paralithodes camtschaticus), also called Kamchatka crab, is widely distributed and the best known species of all king crabs belonging to the family Lithodidae. Despite their economic importance, the genetic resources of king crabs are scarcely known and no full-genome sequences are available to date. Therefore, analysis of the red king crab transcriptome and identification and characterization of its AMPs could potentially contribute to the development of novel antimicrobial drug candidates when antibiotic resistance has become a global health threat. In this study, we sequenced the P. camtschaticus transcriptomes from carapace, tail flap and leg tissues using an Illumina NGS platform. Libraries were systematically analyzed for gene expression profiles along with AMP prediction. By an in silico approach using public databases we defined 49 cDNAs encoding for AMP candidates belonging to diverse families and functional classes, including buforins, crustins, paralithocins, and ALFs (anti-lipopolysaccharide factors). We analyzed expression patterns of 27 AMP genes. The highest expression was found for Paralithocin 1 and Crustin 3, with more than 8,000 reads. Other paralithocins, ALFs, crustins and ubiquicidins were among medium expressed genes. This transcriptome data set and AMPs provide a solid baseline for further functional analysis in P. camtschaticus. Results from the current study contribute also to the future application of red king crab as a bio-resource in addition to its being a known seafood delicacy.


Asunto(s)
Anomuros/genética , Perfilación de la Expresión Génica/veterinaria , Proteínas Citotóxicas Formadoras de Poros/genética , Animales , Proteínas de Artrópodos/genética , Simulación por Computador , Bases de Datos Genéticas , Regulación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Inmunidad Innata , Análisis de Secuencia de ARN , Cola (estructura animal)/química
9.
Sci Rep ; 9(1): 19314, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31848418

RESUMEN

5-Methylcytosine (5mC) is an epigenetic modification involved in regulation of gene expression in metazoans and plants. Iron-(II)/α-ketoglutarate-dependent dioxygenases can oxidize 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Although these oxidized forms of 5mC may serve as demethylation intermediates or contribute to transcriptional regulation in animals and fungi, experimental evidence for their presence in plant genomes is ambiguous. Here, employing reversed-phase HPLC coupled with sensitive mass spectrometry, we demonstrated that, unlike 5caC, both 5hmC and 5fC are detectable in non-negligible quantities in the DNA of a conifer, Norway spruce. Remarkably, whereas 5hmC content of spruce DNA is approximately 100-fold lower relative to human colorectal carcinoma cells, the levels of both - 5fC and a thymine base modification, 5-hydroxymethyluracil, are comparable in these systems. We confirmed the presence of modified DNA bases by immunohistochemistry in Norway spruce buds based on peroxidase-conjugated antibodies and tyramide signal amplification. Our results reveal the presence of specific range of noncanonical DNA bases in conifer genomes implying potential roles for these modifications in plant development and homeostasis.


Asunto(s)
Cromatografía Líquida de Alta Presión , Epigénesis Genética/genética , Genoma de Planta/genética , Picea/genética , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Citosina/análogos & derivados , Citosina/metabolismo , Metilación de ADN/genética , Espectrometría de Masas , Noruega , Picea/metabolismo
10.
Fungal Genet Biol ; 45(4): 498-513, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18060814

RESUMEN

To identify differentially expressed genes of the white-rot fungus Heterobasidion parviporum, two cDNA libraries were constructed using suppressive subtraction hybridization (SSH) technique with RNA extracted from an advanced stage of decay area and from colonization front next to the reaction zone of the stem of a mature Norway spruce naturally colonized by the fungus. Besides several cytochrome P450s and hypothetical proteins with unknown function, the SSH libraries constructed contained, among others, genes involved in basic cellular processes, and lignin and cellulose degradation. To examine the role of selected candidate genes for each functional group, three trees, each colonized by a different genotype of the pathogen and showing a variable degree of wood decay, were used for real-time RT-PCR profiling of candidate genes. In the decay transition areas the study revealed activity centers that showed remarkable similarity in the transcript profiles of the monitored genes.


Asunto(s)
Basidiomycota/crecimiento & desarrollo , Basidiomycota/genética , Perfilación de la Expresión Génica , Picea/microbiología , ADN de Hongos/química , ADN de Hongos/genética , Etiquetas de Secuencia Expresada/química , Proteínas Fúngicas/genética , Biblioteca de Genes , Datos de Secuencia Molecular , Tallos de la Planta/microbiología , ARN de Hongos/biosíntesis , ARN de Hongos/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN
11.
Front Physiol ; 8: 674, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28943851

RESUMEN

Epigenetic memory in Norway spruce affects the timing of bud burst and bud set, vitally important adaptive traits for this long-lived forest species. Epigenetic memory is established in response to the temperature conditions during embryogenesis. Somatic embryogenesis at different epitype inducing (EpI) temperatures closely mimics the natural processes of epigenetic memory formation in seeds, giving rise to epigenetically different clonal plants in a reproducible and predictable manner, with respect to altered bud phenology. MicroRNAs (miRNAs) and other small non-coding RNAs (sRNAs) play an essential role in the regulation of plant gene expression and may affect this epigenetic mechanism. We used NGS sequencing and computational in silico methods to identify and profile conserved and novel miRNAs among small RNAs in embryogenic tissues of Norway spruce at three EpI temperatures (18, 23 and 28°C). We detected three predominant classes of sRNAs related to a length of 24 nt, followed by a 21-22 nt class and a third 31 nt class of sRNAs. More than 2100 different miRNAs within the prevailing length 21-22 nt were identified. Profiling these putative miRNAs allowed identification of 1053 highly expressed miRNAs, including 523 conserved and 530 novels. 654 of these miRNAs were found to be differentially expressed (DEM) depending on EpI temperature. For most DEMs, we defined their putative mRNA targets. The targets represented mostly by transcripts of multiple-repeats proteins, like TIR, NBS-LRR, PPR and TPR repeat, Clathrin/VPS proteins, Myb-like, AP2, etc. Notably, 124 DE miRNAs targeted 203 differentially expressed epigenetic regulators. Developing Norway spruce embryos possess a more complex sRNA structure than that reported for somatic tissues. A variety of the predicted miRNAs showed distinct EpI temperature dependent expression patterns. These putative EpI miRNAs target spruce genes with a wide range of functions, including genes known to be involved in epigenetic regulation, which in turn could provide a feedback process leading to the formation of epigenetic marks. We suggest that TIR, NBS and LRR domain containing proteins could fulfill more general functions for signal transduction from external environmental stimuli and conversion them into molecular response. Fine-tuning of the miRNA production likely participates in both developmental regulation and epigenetic memory formation in Norway spruce.

12.
BMC Plant Biol ; 4: 14, 2004 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-15317655

RESUMEN

BACKGROUND: Real-time reverse transcription PCR (RT-PCR) has greatly improved the ease and sensitivity of quantitative gene expression studies. However, accurate measurement of gene expression with this method relies on the choice of a valid reference for data normalization. Studies rarely verify that gene expression levels for reference genes are adequately consistent among the samples used, nor compare alternative genes to assess which are most reliable for the experimental conditions analyzed. RESULTS: Using real-time RT-PCR to study the expression of 10 poplar (genus Populus) housekeeping genes, we demonstrate a simple method for determining the degree of stability of gene expression over a set of experimental conditions. Based on a traditional method for analyzing the stability of varieties in plant breeding, it defines measures of gene expression stability from analysis of variance (ANOVA) and linear regression. We found that the potential internal control genes differed widely in their expression stability over the different tissues, developmental stages and environmental conditions studied. CONCLUSION: Our results support that quantitative comparisons of candidate reference genes are an important part of real-time RT-PCR studies that seek to precisely evaluate variation in gene expression. The method we demonstrated facilitates statistical and graphical evaluation of gene expression stability. Selection of the best reference gene for a given set of experimental conditions should enable detection of biologically significant changes in gene expression that are too small to be revealed by less precise methods, or when highly variable reference genes are unknowingly used in real-time RT-PCR experiments.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Populus/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/normas , Análisis de Varianza , Genes de Plantas/genética , Modelos Lineales , ARN de Planta/genética , ARN de Planta/aislamiento & purificación , Estándares de Referencia , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Factores de Tiempo
13.
Tree Physiol ; 33(12): 1354-66, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24336613

RESUMEN

To investigate the role of dehydrins (DHNs) in extreme low-temperature (LT) tolerance, we sampled needle tissue of Siberian spruce (Picea obovata Ledeb.) from trees growing in an arboretum in Trondheim, Norway from August 2006 to April 2007 and tracked changes in LT tolerance via relative electrolyte leakage. We used western blotting to estimate relative amounts of proteins binding a DHN K-segment antibody, measured relative amounts of nine transcripts for small (<25 kDa) DHNs by quantitative reverse transcription-polymerase chain reaction (PCR) using primers developed for DHN transcripts in a closely related species, Picea abies (L.) Karsten, and isolated and sequenced PCR products for five P. obovata DHNs. Three protein bands of 53, 35 and 33 kDa were detected on western blots of SDS-PAGE-separated protein extracts. The 53-kDa DHN was already present late in the growing season, but accumulated during acclimation, and levels decreased rapidly during deacclimation. The 33- and 35-kDa proteins, identified as Picg5 class DHNs by mass spectrometry, first appeared in detectable amounts late in the acclimation process and remained at detectable levels throughout the period of maximum LT tolerance. Levels of the 53-kDa DHN correlated with two LT tolerance parameters, while results for the 33- and 35-kDa proteins were equivocal due to limited sample size and variation in LT tolerance during the mid-winter period. Three additional bands of 30, 28 and 26 kDa were detected in extracts from needles collected in November 2010 using an immunity-purified antibody. Immunoblotting of two-dimensional gel electrophoresis gels loaded with proteins extracted from October and November samples corroborated the results obtained by SDS-PAGE western blots. One large spot in the 53 kDa range and two trains of spots in the same size range as the 33 and 35 kDa DHNs were detected using the K-segment antibody. Eight of the nine DHN transcripts closely tracked LT tolerance parameters, whereas the ninth DHN transcripts followed a reverse pattern, decreasing during winter and increasing again during deacclimation. Multiple regression models using principal components of the transcripts to predict two different LT tolerance parameters suggest separate but overlapping functions for different DHNs in establishing and maintaining extreme LT tolerance.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/fisiología , Picea/fisiología , Proteínas de Plantas/metabolismo , Aclimatación , Secuencia de Aminoácidos , Secuencia de Bases , Frío , Cartilla de ADN/genética , Congelación , Datos de Secuencia Molecular , Picea/genética , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Análisis de Regresión , Estaciones del Año , Alineación de Secuencia , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
14.
Plant Sci ; 180(1): 132-9, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21421355

RESUMEN

In Norway spruce, the temperature during zygotic embryogenesis appears to adjust an adaptive epigenetic memory in the progeny that may regulate bud phenology and cold acclimation. Conditions colder than normal advance the timing whilst temperatures above normal delay the onset of these processes and altered performance is long lasting in progeny with identical genetic background. As a step toward unraveling the molecular mechanism behind an epigenetic memory, transcriptional analysis was performed on seedlings from seeds of six full-sib families produced at different embryogenesis temperature-cold (CE) vs warm (WE) under long and short day conditions. We prepared two suppressive subtracted cDNA libraries, forward and reverse, representing genes predominantly expressed in plants from seeds obtained after CE and WE embryogenesis following short day treatment (inducing bud set). Sequencing and annotation revealed considerable differences in the transcriptome of WE versus CE originated plants. By using qRT-PCR we studied the expression patterns of 32 selected candidate genes chosen from subtractive cDNA libraries analysis and nine siRNA pathways genes by a direct candidate approach. Eight genes, two transposons related genes, three with no match to Databases sequences and three genes from siRNA pathways (PaDCL1 and 2, PaSGS3) showed differential expression in progeny from CE and WE correlated with the family phenotypic differences. These findings may contribute to our understanding of the epigenetic mechanisms underlying adaptive changes acquired during embryogenesis.


Asunto(s)
Epigénesis Genética/genética , Picea/genética , Frío , Etiquetas de Secuencia Expresada , Regulación de la Expresión Génica de las Plantas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
15.
Plant Physiol Biochem ; 47(8): 681-9, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19356941

RESUMEN

Expression of selected genes in needles of Norway spruce (Picea abies [L.] Karst) was investigated by following their transcription levels during late autumn. Transcription was assessed in mature needles which likely serve as sensor of environmental cues that enable trees in the temperate and boreal regions to change between stages of growth, frost tolerance and bud dormancy. Samples were collected from grafts kept under outdoor conditions and after bud burst forcing in greenhouse at 20 degrees C (12 h darkness) for one week. Transcription was assayed with real-time RT-PCR. During the sampling period, chilling requirement was partially fulfilled, and time to bud burst after forcing was decreased. Of the 27 transcripts studied, expression of 16 was significantly affected either by forcing, sampling time, or interaction between them. PaSAP, PaACP, PaSGS3, PaWRKY, PaDIR9, PaCCCH and dehydrin genes responded drastically to forcing temperatures at all sampling points, showing no correlation with readiness for bud burst. Expression patterns of some vernalization pathway gene homologs PaVIN3, and also of PaMDC, PaLOV1 and PaDAL3 had a clear opposite trends between forcing and outdoor conditions, which could imply their role in chilling accumulation and bud burst regulation/cold acclimation. These genes could constitute putative candidates for further detailed study, whose regulation in needles may be involved in preparation towards bud burst and chilling accumulation sensing.


Asunto(s)
Expresión Génica , Genes de Plantas , Picea/genética , Hojas de la Planta/metabolismo , Estaciones del Año , Perfilación de la Expresión Génica , Análisis Multivariante , Picea/crecimiento & desarrollo , Picea/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Reacción en Cadena de la Polimerasa , Transcripción Genética , Árboles/metabolismo
16.
Planta ; 228(3): 459-72, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18493789

RESUMEN

Cold deacclimation and preparation to flushing likely requires rehydration of meristems. Therefore, water stress related genes, such as dehydrins (DHN), might play an important role in providing protection during winter dormancy, deacclimation and bud burst timing processes. Here we report the sequence analysis of several Norway spruce DHN identified in late and early flushing suppressive subtraction hybridization cDNA libraries and in our Norway spruce EST database. We obtained 15 cDNAs, representing eight genes from three distinct types of DHN, and studied differential expression of these genes before and during bud burst in spring, using qRT-PCR. We found the visible reduction in transcript level of most DHN towards the bud burst, supported by a significant down-regulation of the DHN in needles during experimental induction of bud burst applied at three time points during autumn in Norway spruce grafts. For most of the DHN transcripts, their expression levels in late-flushing spruces were significantly higher than in the early flushing ones at the same calendar dates but were remarkably similar at the same bud developmental stage. From our results we may conclude that the difference between the early and the late families is in timing of the molecular processes leading to bud burst due to differences in their response to the increasing temperature in the spring. They are induced much earlier in the early flushing families.


Asunto(s)
Flores/genética , Flores/fisiología , Picea/genética , Picea/fisiología , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Datos de Secuencia Molecular , Noruega , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ADN , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA