Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nature ; 589(7841): 306-309, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33208949

RESUMEN

CrAss-like phages are a recently described expansive group of viruses that includes the most abundant virus in the human gut1-3. The genomes of all crAss-like phages encode a large virion-packaged protein2,4 that contains a DFDxD sequence motif, which forms the catalytic site in cellular multisubunit RNA polymerases (RNAPs)5. Here, using Cellulophaga baltica crAss-like phage phi14:2 as a model system, we show that this protein is a DNA-dependent RNAP that is translocated into the host cell along with the phage DNA and transcribes early phage genes. We determined the crystal structure of this 2,180-residue enzyme in a self-inhibited state, which probably occurs before virion packaging. This conformation is attained with the help of a cleft-blocking domain that interacts with the active site and occupies the cavity in which the RNA-DNA hybrid binds. Structurally, phi14:2 RNAP is most similar to eukaryotic RNAPs that are involved in RNA interference6,7, although most of the phi14:2 RNAP structure (nearly 1,600 residues) maps to a new region of the protein fold space. Considering this structural similarity, we propose that eukaryal RNA interference polymerases have their origins in phage, which parallels the emergence of the mitochondrial transcription apparatus8.


Asunto(s)
Bacteriófagos/clasificación , Bacteriófagos/enzimología , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Flavobacteriaceae/virología , Bacteriófagos/genética , Dominio Catalítico , Sistema Libre de Células , Cristalografía por Rayos X , ADN de Cadena Simple/biosíntesis , ADN de Cadena Simple/genética , ARN Polimerasas Dirigidas por ADN/genética , Evolución Molecular , Regulación Viral de la Expresión Génica , Genes Virales/genética , Modelos Biológicos , Modelos Moleculares , Dominios Proteicos , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Interferencia de ARN , Transcripción Genética
2.
J Virol ; : e0020524, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39258909

RESUMEN

During infection, the giant phiKZ phage forms a specialized structure at the center of the host cell called the phage nucleus. This structure is crucial for safeguarding viral DNA against bacterial nucleases and for segregating the transcriptional activities of late genes. Here, we describe a morphological entity, the early phage infection (EPI) vesicle, which appears to be responsible for earlier gene segregation at the beginning of the infection process. Using cryo-electron microscopy, electron tomography (ET), and fluorescence microscopy with membrane-specific dyes, we demonstrated that the EPI vesicle is enclosed in a lipid bilayer originating, apparently, from the inner membrane of the bacterial cell. Our investigations further disclose that the phiKZ EPI vesicle contains both viral DNA and viral RNA polymerase (vRNAP). We have observed that the EPI vesicle migrates from the cell pole to the center of the bacterial cell together with ChmA, the primary protein of the phage nucleus. The phage DNA is transported into the phage nucleus after phage maturation, but the EPI vesicle remains outside. We hypothesized that the EPI vesicle acts as a membrane transport agent, efficiently delivering phage DNA to the phage nucleus while protecting it from the nucleases of the bacterium. IMPORTANCE: Our study shed light on the processes of phage phiKZ early infection stage, expanding our understanding of possible strategies for the development of phage infection. We show that phiKZ virion content during injection is packed inside special membrane structures called early phage infection (EPI) membrane vesicles originating from the bacterial inner cell membrane. We demonstrated the EPI vesicle fulfilled the role of the safety transport unit for the phage genome to the phage nucleus, where the phage DNA would be replicated and protected from bacterial immune systems.

3.
Biochem Biophys Res Commun ; 693: 149372, 2024 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-38128246

RESUMEN

The giant myovirus phiKZ is characterised by an Inner Body (IB) structure within its capsid, crucial for orderly DNA packaging. The IB is composed of six phiKZ-specific proteins. Notably, four of these IB proteins are co-injected with DNA into the host cell, where they potentially play a role in attacking the bacterial cell. The dynamics of IB assembling within the phiKZ capsid during infection remain poorly understood. In this study, we used fluorescent microscopy to track the localisation of IB proteins fused to fluorescent proteins within the cell throughout the infection process. Our findings reveal that the proteins Gp97 and Gp162 are incorporated into new virion heads during phage head maturation. In contrast, proteins Gp90, Gp93, and Gp95 are likely integrated into the virion shortly before the DNA packaging.


Asunto(s)
Bacteriófagos , Proteínas de la Cápside
4.
Nucleic Acids Res ; 49(13): 7732-7739, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34181731

RESUMEN

Bacteriophage ΦKZ (PhiKZ) is the archetype of a family of massive bacterial viruses. It is considered to have therapeutic potential as its host, Pseudomonas aeruginosa, is an opportunistic, intrinsically antibiotic resistant, pathogen that kills tens of thousands worldwide each year. ΦKZ is an incredibly interesting virus, expressing many systems that the host already possesses. On infection, it forms a 'nucleus', erecting a barrier around its genome to exclude host endonucleases and CRISPR-Cas systems. ΦKZ infection is independent of the host transcriptional apparatus. It expresses two different multi-subunit RNA polymerases (RNAPs): the virion RNAP (vRNAP) is injected with the viral DNA during infection to transcribe early genes, including those encoding the non-virion RNAP (nvRNAP), which transcribes all further genes. ΦKZ nvRNAP is formed by four polypeptides thought to represent homologues of the eubacterial ß/ß' subunits, and a fifth with unclear homology, but essential for transcription. We have resolved the structure of ΦKZ nvRNAP to better than 3.0 Å, shedding light on its assembly, homology, and the biological role of the fifth subunit: it is an embedded, integral member of the complex, the position, structural homology and biochemical role of which imply that it has evolved from an ancestral homologue to σ-factor.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/química , Fagos Pseudomonas/enzimología , Proteínas Virales/química , Microscopía por Crioelectrón , ARN Polimerasas Dirigidas por ADN/metabolismo , Modelos Moleculares , Regiones Promotoras Genéticas , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Proteínas Virales/metabolismo
5.
Biochem Biophys Res Commun ; 511(4): 759-764, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30833081

RESUMEN

Non-canonical multisubunit DNA-dependent RNA-polymerases (RNAP) form a new group of the main transcription enzymes, which have only distinct homology to the catalytic subunits of canonical RNAPs of bacteria, archaea and eukaryotes. One of the rare non-canonical RNAP, which was partially biochemically characterized, is non-virion RNAP (nvRNAP) encoded by Pseudomonas phage phiKZ. PhiKZ nvRNAP consists of five subunits, four of which are homologs of ß and ß' subunit of bacterial RNAP, and the fifth subunits with unknown function. To understand the role of the fifth subunit in phiKZ nvRNAP, we created co-expression system allowing to get recombinant full five-subunit (5s) and four-subunit (4s) complexes and performed their comparison. The 5s recombinant complex is active on phage promoters in vitro as the native nvRNAP. The 4s complex cannot extend RNA, so 4s complex is not a catalytically active core of phiKZ nvRNAP. Thus, the phiKZ fifth subunit is not only a promoter-recognition subunit, but it plays an important role in the formation of active phiKZ nvRNAP.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Fagos Pseudomonas/enzimología , Proteínas Virales/metabolismo , Dominio Catalítico , ADN Viral/genética , ADN Viral/metabolismo , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , Regiones Promotoras Genéticas , Unión Proteica , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Fagos Pseudomonas/química , Fagos Pseudomonas/genética , Fagos Pseudomonas/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transcripción Genética , Proteínas Virales/química , Proteínas Virales/genética
8.
Nucleic Acids Res ; 43(21): 10411-20, 2015 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-26490960

RESUMEN

The infection of Pseudomonas aeruginosa by the giant bacteriophage phiKZ is resistant to host RNA polymerase (RNAP) inhibitor rifampicin. phiKZ encodes two sets of polypeptides that are distantly related to fragments of the two largest subunits of cellular multisubunit RNAPs. Polypeptides of one set are encoded by middle phage genes and are found in the phiKZ virions. Polypeptides of the second set are encoded by early phage genes and are absent from virions. Here, we report isolation of a five-subunit RNAP from phiKZ-infected cells. Four subunits of this enzyme are cellular RNAP subunits homologs of the non-virion set; the fifth subunit is a protein of unknown function. In vitro, this complex initiates transcription from late phiKZ promoters in rifampicin-resistant manner. Thus, this enzyme is a non-virion phiKZ RNAP responsible for transcription of late phage genes. The phiKZ RNAP lacks identifiable assembly and promoter specificity subunits/factors characteristic for eukaryal, archaeal and bacterial RNAPs and thus provides a unique model for comparative analysis of the mechanism, regulation and evolution of this important class of enzymes.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Fagos Pseudomonas/enzimología , Proteínas Virales/química , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Secuencia Conservada , ARN Polimerasas Dirigidas por ADN/aislamiento & purificación , Motivos de Nucleótidos , Regiones Promotoras Genéticas , Subunidades de Proteína/química , Subunidades de Proteína/aislamiento & purificación , Subunidades de Proteína/metabolismo , Pseudomonas aeruginosa/virología , Transcripción Genética , Proteínas Virales/aislamiento & purificación
9.
J Virol ; 88(18): 10501-10, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24965474

RESUMEN

UNLABELLED: Pseudomonas aeruginosa bacteriophage ϕKZ is the type representative of the giant phage genus, which is characterized by unusually large virions and genomes. By unraveling the transcriptional map of the ∼ 280-kb ϕKZ genome to single-nucleotide resolution, we combine 369 ϕKZ genes into 134 operons. Early transcription is initiated from highly conserved AT-rich promoters distributed across the ϕKZ genome and located on the same strand of the genome. Early transcription does not require phage or host protein synthesis. Transcription of middle and late genes is dependent on protein synthesis and mediated by poorly conserved middle and late promoters. Unique to ϕKZ is its ability to complete its infection in the absence of bacterial RNA polymerase (RNAP) enzyme activity. We propose that transcription of the ϕKZ genome is performed by the consecutive action of two ϕKZ-encoded, noncanonical multisubunit RNAPs, one of which is packed within the virion, another being the product of early genes. This unique, rifampin-resistant transcriptional machinery is conserved within the diverse giant phage genus. IMPORTANCE: The data presented in this paper offer, for the first time, insight into the complex transcriptional scheme of giant bacteriophages. We show that Pseudomonas aeruginosa giant phage ϕKZ is able to infect and lyse its host cell and produce phage progeny in the absence of functional bacterial transcriptional machinery. This unique property can be attributed to two phage-encoded putative RNAP enzymes, which contain very distant homologues of bacterial ß and ß'-like RNAP subunits.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bacteriófagos/crecimiento & desarrollo , ARN Polimerasas Dirigidas por ADN/metabolismo , Regulación Viral de la Expresión Génica , Fagos Pseudomonas/crecimiento & desarrollo , Pseudomonas aeruginosa/enzimología , Proteínas Bacterianas/genética , Bacteriófagos/enzimología , Bacteriófagos/genética , Bacteriófagos/fisiología , ARN Polimerasas Dirigidas por ADN/genética , Genoma Viral , Interacciones Huésped-Patógeno , Fagos Pseudomonas/enzimología , Fagos Pseudomonas/genética , Fagos Pseudomonas/fisiología , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/virología , Transcripción Genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Replicación Viral
10.
J Mol Biol ; 436(18): 168713, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39029888

RESUMEN

Bacteriophage ΦKZ (PhiKZ) is the founding member of a family of giant bacterial viruses. It has potential as a therapeutic as its host, Pseudomonas aeruginosa, kills tens of thousands of people worldwide each year. ΦKZ infection is independent of the host transcriptional apparatus; the virus forms a "nucleus", producing a proteinaceous barrier around the ΦKZ genome that excludes the host immune systems. It expresses its own non-canonical multi-subunit non-virion RNA polymerase (nvRNAP), which is imported into its "nucleus" to transcribe viral genes. The ΦKZ nvRNAP is formed by four polypeptides representing homologues of the eubacterial ß/ß' subunits, and a fifth that is likely to have evolved from an ancestral homologue to σ-factor. We have resolved the structure of the ΦKZ nvRNAP initiating transcription from its cognate promoter, p119L, including previously disordered regions. Our results shed light on the similarities and differences between ΦKZ nvRNAP mechanisms of transcription and those of canonical eubacterial RNAPs and the related non-canonical nvRNAP of bacteriophage AR9.


Asunto(s)
ARN Polimerasas Dirigidas por ADN , Regiones Promotoras Genéticas , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/química , Modelos Moleculares , Bacteriófagos/genética , Bacteriófagos/enzimología , Transcripción Genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Proteínas Virales/química , Fagos Pseudomonas/genética , Fagos Pseudomonas/enzimología , Conformación Proteica , Pseudomonas aeruginosa/virología , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/enzimología , Cristalografía por Rayos X
11.
bioRxiv ; 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37333075

RESUMEN

Antibiotic streptolydigin (Stl) inhibits bacterial transcription by blocking the trigger loop folding in the active center of RNA polymerase (RNAP), which is essential for catalysis. We use acoustic force spectroscopy to characterize the dynamics of transcription elongation in ternary elongation complexes of RNAP (ECs) in the presence of Stl at a single-molecule level. We found that Stl induces long-lived stochastic pauses while the instantaneous velocity of transcription between the pauses is unaffected. Stl enhances the short-lived pauses associated with an off-pathway elemental paused state of the RNAP nucleotide addition cycle. Unexpectedly, we found that transcript cleavage factors GreA and GreB, which were thought to be Stl competitors, do not alleviate the streptolydigin-induced pausing; instead, they synergistically increase transcription inhibition by Stl. This is the first known instance of a transcriptional factor enhancing antibiotic activity. We propose a structural model of the EC-Gre-Stl complex that explains the observed Stl activities and provides insight into possible cooperative action of secondary channel factors and other antibiotics binding at the Stl-pocket. These results offer a new strategy for high-throughput screening for prospective antibacterial agents.

12.
Viruses ; 15(10)2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37896872

RESUMEN

A nucleus-like structure composed of phage-encoded proteins and containing replicating viral DNA is formed in Pseudomonas aeruginosa cells infected by jumbo bacteriophage phiKZ. The PhiKZ genes are transcribed independently from host RNA polymerase (RNAP) by two RNAPs encoded by the phage. The virion RNAP (vRNAP) transcribes early viral genes and must be injected into the cell with phage DNA. The non-virion RNAP (nvRNAP) is composed of early gene products and transcribes late viral genes. In this work, the dynamics of phage RNAPs localization during phage phiKZ infection were studied. We provide direct evidence of PhiKZ vRNAP injection in infected cells and show that it is excluded from the phage nucleus. The nvRNAP is synthesized shortly after the onset of infection and localizes in the nucleus. We propose that spatial separation of two phage RNAPs allows coordinated expression of phage genes belonging to different temporal classes.


Asunto(s)
Bacteriófagos , Fagos Pseudomonas , Bacteriófagos/genética , Proteínas Virales/metabolismo , Fagos Pseudomonas/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Genes Virales
13.
Viruses ; 12(10)2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-33096802

RESUMEN

The giant phiKZ phage infection induces the appearance of a pseudo-nucleus inside the bacterial cytoplasm. Here, we used RT-PCR, fluorescent in situ hybridization (FISH), electron tomography, and analytical electron microscopy to study the morphology of this unique nucleus-like shell and to demonstrate the distribution of phiKZ and bacterial DNA in infected Pseudomonas aeruginosa cells. The maturation of the pseudo-nucleus was traced in short intervals for 40 min after infection and revealed the continuous spatial separation of the phage and host DNA. Immediately after ejection, phage DNA was located inside the newly-identified round compartments; at a later infection stage, it was replicated inside the pseudo-nucleus; in the mature pseudo-nucleus, a saturated internal network of filaments was observed. This network consisted of DNA bundles in complex with DNA-binding proteins. On the other hand, the bacterial nucleoid underwent significant rearrangements during phage infection, yet the host DNA did not completely degrade until at least 40 min after phage application. Energy dispersive x-ray spectroscopy (EDX) analysis revealed that, during the infection, the sulfur content in the bacterial cytoplasm increased, which suggests an increase of methionine-rich DNA-binding protein synthesis, whose role is to protect the bacterial DNA from stress caused by infection.


Asunto(s)
Fagos Pseudomonas/ultraestructura , Pseudomonas aeruginosa/ultraestructura , Pseudomonas aeruginosa/virología , ADN Bacteriano/análisis , ADN Viral/análisis , Hibridación Fluorescente in Situ , Microscopía Electrónica de Transmisión , Fagos Pseudomonas/genética , Pseudomonas aeruginosa/genética
14.
Virology ; 495: 185-96, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27236306

RESUMEN

Bacteriophage AR9 and its close relative PBS1 have been extensively used to construct early Bacillus subtilis genetic maps. Here, we present the 251,042bp AR9 genome, a linear, terminally redundant double-stranded DNA containing deoxyuridine instead of thymine. Multiple AR9 genes are interrupted by non-coding sequences or sequences encoding putative endonucleases. We show that these sequences are group I and group II self-splicing introns. Eight AR9 proteins are homologous to fragments of bacterial RNA polymerase (RNAP) subunits ß/ß'. These proteins comprise two sets of paralogs of RNAP largest subunits, with each paralog encoded by two disjoint phage genes. Thus, AR9 is a phiKZ-related giant phage that relies on two multisubunit viral RNAPs to transcribe its genome independently of host transcription apparatus. Purification of one of PBS1/AR9 RNAPs has been reported previously, which makes AR9 a promising object for further studies of RNAP evolution, assembly and mechanism.


Asunto(s)
Fagos de Bacillus/genética , ARN Polimerasas Dirigidas por ADN/genética , Genoma Viral , Subunidades de Proteína/genética , Fagos de Bacillus/clasificación , Fagos de Bacillus/metabolismo , Secuencia de Bases , Secuencia de Consenso , Replicación del ADN , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Orden Génico , Intrones , Sistemas de Lectura Abierta , Filogenia , Posición Específica de Matrices de Puntuación , Regiones Promotoras Genéticas , Subunidades de Proteína/metabolismo , Empalme del ARN , Proteínas Virales/genética , Proteínas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA