Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Appl Microbiol Biotechnol ; 104(9): 3859-3867, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32146494

RESUMEN

The aim of this study was to clarify the effect of the spore-forming and lactic acid-producing probiotic strain, Bacillus coagulans SANK 70258, on human colonic microbiota of healthy subjects and ulcerative colitis patients. A model culture system was employed to construct the in vitro human colonic microbiota, to retain the bacterial species richness and simulate the patient's disordered composition, from the fecal inoculum. Bacterial 16S rRNA gene sequencing confirmed that administration of B. coagulans SANK 70258 (at an initial concentration of 4 × 107-total cells/mL) suppressed bacteria related to the family Enterobacteriaceae in the microbiota models for both healthy subjects (P = 0.016) and ulcerative colitis patients (P = 0.023). In addition, administration of B. coagulans SANK 70258 increased bacteria related to the family Lachnospiraceae (P = 0.031), thereby enhancing butyrate production (P = 0.031) in the microbiota models of healthy subjects. However, these changes were not observed in the microbiota models of ulcerative colitis patients, likely owing to the low abundance of Lachnospiraceae species. This study demonstrates the potential of B. coagulans SANK 70258 to exhibit antimicrobial activity against harmful organisms in patients with ulcerative colitis, while improving the intestinal microenvironment by increasing butyrogenesis in healthy persons. KEY POINTS: • B. coagulans SANK 70258 treatment reduced colonic Enterobacteriaceae species. • B. coagulans SANK 70258 treatment enhanced butyrogenesis in healthy individuals. • B. coagulans SANK 70258 treatment increased Lachnospiraceae in healthy persons. • B. coagulans SANK 70258 improves the colonic microenvironment in ulcerative colitis.


Asunto(s)
Bacillus coagulans/genética , Butiratos/metabolismo , Colitis Ulcerosa/microbiología , Enterobacteriaceae/patogenicidad , Microbioma Gastrointestinal , Probióticos/uso terapéutico , Adulto , Anciano , Bacillus coagulans/metabolismo , Colitis Ulcerosa/terapia , Heces/microbiología , Femenino , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad
2.
Front Immunol ; 15: 1389920, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38957464

RESUMEN

Probiotic consumption strongly influences local intestinal immunity and systemic immune status. Heyndrickxia coagulans strain SANK70258 (HC) is a spore-forming lactic acid bacterium that has immunostimulatory properties on peripheral tissues. However, few reports have examined the detailed effectiveness of HC on human immune function and its mechanism of action. Therefore, we conducted a randomized, double-blind, placebo-controlled, parallel-group study to comprehensively evaluate the effects of HC on immunostimulatory capacity, upper respiratory tract infection (URTI) symptoms, and changes in intestinal organic-acid composition. Results of a questionnaire survey of URTI symptoms showed that runny nose, nasal congestion, sneezing, and sore throat scores as well as the cumulative number of days of these symptoms were significantly lower in the HC group than in the placebo group during the study period. Furthermore, the salivary secretory immunoglobulin A (sIgA) concentration was significantly higher, and the natural killer (NK) cell activity tended to be higher in the HC group than in the placebo group. In addition, we performed an exposure culture assay of inactivated influenza virus on peripheral blood mononuclear cells (PBMCs) isolated from the blood of participants in the HC and placebo groups. Gene-expression analysis in PBMCs after culture completion showed that IFNα and TLR7 expression levels were significantly higher in the HC group than in the placebo group. In addition, the expression levels of CD304 tended to be higher in the HC group than in the placebo group. On the other hand, the HC group showed a significantly higher increase in the intestinal butyrate concentration than the placebo group. HC intake also significantly suppressed levels of IL-6 and TNFα produced by PBMCs after exposure to inactivated influenza virus. Collectively, these results suggest that HC activated plasmacytoid dendritic cells expressing TLR7 and CD304 and strongly induced IFNα production, subsequently activating NK cells and increasing sIgA levels, and induced anti-inflammatory effects via increased intestinal butyrate levels. These changes may contribute to the acquisition of host resistance to viral infection and URTI prevention.


Asunto(s)
Probióticos , Infecciones del Sistema Respiratorio , Humanos , Infecciones del Sistema Respiratorio/inmunología , Método Doble Ciego , Masculino , Adulto , Probióticos/administración & dosificación , Femenino , Adulto Joven , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Microbioma Gastrointestinal/inmunología , Inmunoglobulina A Secretora/inmunología , Receptor Toll-Like 7/metabolismo , Receptor Toll-Like 7/inmunología , Inmunomodulación
3.
Pathogens ; 12(1)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36678444

RESUMEN

To determine the mechanisms by which Weizmannia coagulans SANK70258 (WC) supplementation improved growth performance and coccidial symptoms, we assessed the gene expressions and the microbiota compositions in the small intestinal tissues and digestas of coccidium-infected broilers previously given WC or lasalocid-A sodium (AM). WC supplementation significantly upregulated the gene expressions related to intestinal immunity and barrier functions, such as IL17A, IL17F, IL10, cathelicidin-2 and pIgR. Body weights, and Claudin-1 and IL10 expressions were positively correlated (r = 0.41, p < 0.05 and r = 0.37, p = 0.06, respectively), whereas lesion scores of the small intestine and IL17A expression were negatively correlated (r = −0.33, p = 0.09). The microbiota analysis detected that genus Alistipes was more abundant in WC-supplemented broilers than in control, and positively correlated with body weights and Claudin-1 expression (r = 0.61, p < 0.05 and r = 0.51, p < 0.05, respectively). Intriguingly, genus Enterococcus was most abundant in WC-supplemented broilers and positively correlated with IL17A expression (r = 0.49, p < 0.05). Interestingly, Escherichia-Shigella was significantly more abundant in the small intestinal digestas of AM-administered broilers than in those of control. To summarize, WC supplementation modulated and immunostimulated the microbiotas of broilers, specifically genera Alistipes and Enterococcus, which led to the improvement of weight gain and coccidial symptoms, without disrupting the intestinal microbiota compositions, as AM did.

4.
Vet Sci ; 9(8)2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-36006321

RESUMEN

To determine whether it could also improve the production performance of Eimeria-infected broilers, Weizmannia coagulans strain SANK70258 (WC) supplementation was compared with coccidiostat lasalocid-A sodium (AM) administration. First, to determine the optimum WC dose, newly hatched broiler chick groups (n = 10) were untreated or consecutively given WC (0.005%, 0.01%, 0.03%, and 0.1%) and AM until slaughter (31 days of age). At day 21, all chicks were infected with coccidia. From the economical and practical viewpoints, 0.03% WC supplementation was the best dose. Second, newly hatched broiler chick groups (n = 10) were untreated or given 0.03% WC and AM. Each group was run in triplicate. At day 21, two chicks/pen with the farthest body weights as per the group's mean body weight were spared, and the remaining inoculated with coccidia. At days 42 and 49, the WC and AM groups had significantly greater body weights and daily weight gains. Intestinal lesion scores were lower in 29-day-old AM and WC. Oocyst numbers were lower in 29- and 49-day-old AM and WC, but only 29- and 49-day-old AM had higher Escherichia coli levels. To conclude, although WC and AM induced similar growth performance in coccidium-infected chicks, unlike AM, the E. coli levels did not increase with WC.

5.
J Biosci Bioeng ; 134(2): 105-115, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35718655

RESUMEN

Weizmannia coagulans SANK70258 is a spore-forming thermostable lactic acid bacterium and an effective probiotic for the growth of livestock animals, but its growth-promoting mechanism remains unclear. Here, the composition of fecal metabolites in broilers continuously administered with W. coagulans SANK70258 was assessed under a regular program with antibiotics, which was transiently given for 6 days after birth. Oral administration of W. coagulans to broiler chicks tended to increase the average daily gain of body weights thereafter. The composition of fecal metabolites in the early chick stage (day 10 after birth) was dramatically altered by the continuous exposure. The levels of short-chain fatty acids (SCFAs) propionate and butyrate markedly increased, while those of acetate, one of the SCFAs, and lactate were reduced. Simultaneously, arabitol, fructose, mannitol, and erythritol, which are carbohydrates as substrates for gut microbes to produce SCFAs, also increased along with altered correlation. Correlation network analyses classified the modularity clusters (|r| > 0.7) among carbohydrates, SCFAs, lactate, amino acids, and the other metabolites under the two conditions. The characteristic diversities by the exposure were visualized beyond the perspective associated with differences in metabolite concentrations. Further, enrichment pathway analyses showed that metabolic composition related to biosynthesis and/or metabolism for SCFAs, amino acids, and energy were activated. Thus, these observations suggest that W. coagulans SANK70258 dramatically modulates the gut metabolism of the broiler chicks, and the metabolomics profiles during the early chick stages may be associated with growth promotion.


Asunto(s)
Lactobacillales , Probióticos , Aminoácidos , Animales , Carbohidratos , Pollos/metabolismo , Ácidos Grasos Volátiles/metabolismo , Lactatos , Lactobacillales/metabolismo
6.
Comp Biochem Physiol B Biochem Mol Biol ; 149(3): 507-16, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18226571

RESUMEN

In various insects, 20-hydroxyecdysone (20E) is indispensable for embryonic development. In eggs of the silkworm Bombyx mori, 20E has been demonstrated to be produced by two metabolic pathways: de novo synthesis from cholesterol and dephosphorylation of ovary-derived physiologically inactive ecdysteroid phosphates. In the former, ecdysone 20-hydroxylase (E20OHase) has been suggested to be a key enzyme. In the latter, it has been demonstrated that the dephosphorylation of ecdysteroid phosphates is catalyzed by a specific enzyme, ecdysteroid-phosphate phosphatase (EPPase). In this study, a cDNA encoding E20OHase was cloned from 3-day-old nondiapause eggs of B. mori and sequenced using PCR techniques. The protein exhibited the signature sequences characteristic of P450 enzymes, and mediated the conversion of ecdysone to 20E using the baculovirus expression system. Semi-quantitative analysis revealed that the E20OHase mRNA is expressed predominantly during gastrulation and organogenesis in nondiapause eggs, but is scarcely detected in diapause eggs whose development is arrested at the late gastrula stage. The developmental changes in the expression patterns of E20OHase and EPPase suggest that both enzyme activities are regulated at the transcription level, and both enzymes contribute cooperatively to 20E formation during embryonic development.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas/genética , Bombyx/embriología , Bombyx/enzimología , Desarrollo Embrionario , Esteroide Hidroxilasas/genética , Secuencia de Aminoácidos , Animales , Hidrocarburo de Aril Hidroxilasas/química , Baculoviridae , Secuencia de Bases , Cromatografía Líquida de Alta Presión , Clonación Molecular , ADN Complementario/genética , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Filogenia , ARN Mensajero/genética , ARN Mensajero/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Esteroide Hidroxilasas/química
7.
Zoolog Sci ; 22(2): 187-98, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15738639

RESUMEN

Newly laid eggs of many insect species store maternal ecdysteroids as physiologically inactive phosphoric esters. In the silkworm Bombyx mori, we previously reported the presence of a specific enzyme, called ecdysteroid-phosphate phosphatase (EPPase), which catalyzes the dephosphorylation of ecdysteroid-phosphates to increase the amount of free ecdysteroids during early embryonic development. In this study, we demonstrated that (1) EPPase is found in the cytosol of yolk cells, (2) ecdysteroid-phosphates are localized in yolk granules, being bound to the yolk protein vitellin (Vn), and (3) Vn-bound ecdysteroid-phosphates are scarcely hydrolyzed by EPPase, although free ecdysteroid-phosphates are completely hydrolyzed by EPPase. Thus, we investigated the mechanism by which ecdysteroid-phosphates dissociate from the Vn-ecdysteroid-phosphate complex, and indicated that the acidification of yolk granules causes the dissociation of ecdysteroid-phosphates from the Vn-ecdysteroid-phosphate complex and thereby ecdysteroid-phosphates are released from yolk granules into the cytosol. Indeed, the presence of vacuolar-type proton-translocating ATPase in the membrane fraction of yolk granules was also verified by Western blot analysis. Our experiments revealed that Vn functions as a reservoir of maternal ovarian ecdysteroid-phosphates as well as a nutritional source during embryonic development. This is the first report showing the biochemical mechanism by which maternal Vn-bound ecdysteroid-phosphates function during early embryonic development.


Asunto(s)
Bombyx/embriología , Bombyx/metabolismo , Ecdisteroides/metabolismo , Proteínas del Huevo/metabolismo , Yema de Huevo/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Animales , Western Blotting , Cromatografía en Gel , Cromatografía por Intercambio Iónico , Concentración de Iones de Hidrógeno , ATPasas de Translocación de Protón Vacuolares/metabolismo , Vitelinas/metabolismo
8.
Zoolog Sci ; 21(5): 503-16, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15170054

RESUMEN

It has been well established that eggs of insects, including those of the silkworm Bombyx mori, contain various molecular species of ecdysteroids in free and conjugated forms. In B. mori eggs, 20-hydroxyecdysone (20E) is a physiologically active molecule. In nondiapause eggs, 20E is produced by the conversion of maternal conjugated ecdysteroids (ecdysteroid-phosphates) and by de novo biosynthesis. In contrast, in diapause eggs, neither of these metabolic processes occurs. In de novo biosynthesis of 20E in B. mori eggs, hydroxylation at the C-20 position of ecdysone, which is catalyzed by ecdysone 20-hydroxylase, is a rate-limiting step. Furthermore, we found that a novel enzyme, called ecdysteroid-phosphate phosphatase (EPPase), specifically catalyzes the conversion of ecdysteroid-phosphates to free ecdysteroids. The developmental changes in the expression pattern of EPPase mRNA correspond closely to changes in the enzyme activity and in the amounts of free ecdysteroids in eggs. EPPase is localized in the cytosol of yolk cells, and the bulk of maternal ecdysteroid-phosphates is bound to vitellin and stored in yolk granules. The vitellin-bound ecdysteroid-phosphates are scarcely hydrolyzed by EPPase. Therefore, to examine how ecdysteroid-phosphates are hydrolyzed by EPPase during embryonic development further investigations were focused on yolk granules. Recent data indicate that acidification in yolk granules, induced by vacuolar H(+)-ATPase, triggers the dissociation of ecdysteroid-phosphates from the vitellin-ecdysteroid-phosphates complex and the dissociated ecdysteroid-phosphates are released from yolk granules to the cytosol. To explain the process of the increase in the level of 20E during embryonic development in B. mori eggs, a possible model is proposed.


Asunto(s)
Bombyx/embriología , Ecdisteroides/metabolismo , Regulación del Desarrollo de la Expresión Génica , Modelos Biológicos , ARN Mensajero/metabolismo , Cigoto/metabolismo , Animales , Hidrocarburo de Aril Hidroxilasas/metabolismo , Bombyx/metabolismo , Catálisis , Ecdisteroides/química , Ecdisteroides/fisiología , Ecdisterona/biosíntesis , Proteínas del Huevo/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Esteroide Hidroxilasas/metabolismo , Factores de Tiempo
9.
J Biol Chem ; 278(29): 26365-73, 2003 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-12721294

RESUMEN

From eggs of the silkworm Bombyx mori, we isolated a novel enzyme that is involved in the conversion of physiologically inactive conjugated ecdysteroids, such as ecdysone 22-phosphate and 20-hydroxyecdysone 22-phosphate, to active free ecdysteroids. This enzyme, called ecdysteroid-phosphate phosphatase (EPPase), was located in the cytosol fraction and differed from nonspecific lysosomal acid phosphatases in various enzymic properties. EPPase was purified about 3,000-fold to homogeneity by seven steps of column chromatography. The cDNA clone encoding EPPase was isolated by reverse transcription polymerase chain reaction using degenerate primers on the basis of the partial amino acid sequence obtained from purified EPPase and by subsequent 3'- and 5'-rapid amplification of cDNA ends. The full-length cDNA of EPPase was found to be composed of 1620 bp with an open reading frame encoding a protein of 331 amino acid residues. A data base search showed that there was no functional protein with the amino acid sequence identical to that of EPPase. Northern blot analysis revealed that EPPase mRNA was expressed predominantly during gastrulation and organogenesis in nondiapause eggs but was not detected in diapause eggs whose development was arrested at the late gastrula stage. In nondiapause eggs, the developmental changes in the expression pattern of EPPase mRNA corresponded closely to changes in the enzyme activity and in the amounts of free ecdysteroids in eggs.


Asunto(s)
Ecdisteroides/metabolismo , Monoéster Fosfórico Hidrolasas/aislamiento & purificación , Monoéster Fosfórico Hidrolasas/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Bombyx/embriología , Bombyx/enzimología , Bombyx/genética , Clonación Molecular , ADN Complementario/genética , Femenino , Cinética , Masculino , Datos de Secuencia Molecular , Óvulo/enzimología , Monoéster Fosfórico Hidrolasas/genética , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA