Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Cell ; 164(3): 512-25, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26824659

RESUMEN

The selectivity with which proprioceptive sensory neurons innervate their central and peripheral targets implies that they exhibit distinctions in muscle-type identity. The molecular correlates of proprioceptor identity and its origins remain largely unknown, however. In screens to define muscle-type proprioceptor character, we find all-or-none differences in gene expression for proprioceptors that control antagonistic muscles at a single hindlimb joint. Analysis of three of these genes, cadherin13 (cdh13), semaphorin5a (sema5a), and cartilage-acidic protein-1 (crtac1), reveals expression in proprioceptor subsets that supply muscle groups located at restricted dorsoventral and proximodistal domains of the limb. Genetically altering the dorsoventral character of the limb mesenchyme elicits a change in the profile of proprioceptor cdh13, sema5a, and crtac1 expression. These findings indicate that proprioceptors acquire aspects of their muscle-type identity in response to mesenchymal signals expressed in restricted proximodistal and dorsoventral domains of the developing limb.


Asunto(s)
Extremidades/embriología , Mesodermo/metabolismo , Propiocepción , Animales , Cadherinas/genética , Proteínas de Unión al Calcio/genética , Embrión de Mamíferos/metabolismo , Extremidades/fisiología , Ratones , Músculo Esquelético/inervación , Neuronas/metabolismo , Semaforinas/genética , Transducción de Señal , Transcriptoma
2.
Nature ; 620(7972): 154-162, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37495689

RESUMEN

Fasting initiates a multitude of adaptations to allow survival. Activation of the hypothalamic-pituitary-adrenal (HPA) axis and subsequent release of glucocorticoid hormones is a key response that mobilizes fuel stores to meet energy demands1-5. Despite the importance of the HPA axis response, the neural mechanisms that drive its activation during energy deficit are unknown. Here, we show that fasting-activated hypothalamic agouti-related peptide (AgRP)-expressing neurons trigger and are essential for fasting-induced HPA axis activation. AgRP neurons do so through projections to the paraventricular hypothalamus (PVH), where, in a mechanism not previously described for AgRP neurons, they presynaptically inhibit the terminals of tonically active GABAergic afferents from the bed nucleus of the stria terminalis (BNST) that otherwise restrain activity of corticotrophin-releasing hormone (CRH)-expressing neurons. This disinhibition of PVHCrh neurons requires γ-aminobutyric acid (GABA)/GABA-B receptor signalling and potently activates the HPA axis. Notably, stimulation of the HPA axis by AgRP neurons is independent of their induction of hunger, showing that these canonical 'hunger neurons' drive many distinctly different adaptations to the fasted state. Together, our findings identify the neural basis for fasting-induced HPA axis activation and uncover a unique means by which AgRP neurons activate downstream neurons: through presynaptic inhibition of GABAergic afferents. Given the potency of this disinhibition of tonically active BNST afferents, other activators of the HPA axis, such as psychological stress, may also work by reducing BNST inhibitory tone onto PVHCrh neurons.


Asunto(s)
Ayuno , Sistema Hipotálamo-Hipofisario , Neuronas , Sistema Hipófiso-Suprarrenal , Proteína Relacionada con Agouti/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Ayuno/fisiología , Neuronas GABAérgicas/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Sistema Hipotálamo-Hipofisario/citología , Sistema Hipotálamo-Hipofisario/metabolismo , Neuronas/metabolismo , Núcleo Hipotalámico Paraventricular/citología , Núcleo Hipotalámico Paraventricular/metabolismo , Sistema Hipófiso-Suprarrenal/citología , Sistema Hipófiso-Suprarrenal/inervación , Sistema Hipófiso-Suprarrenal/metabolismo , Terminales Presinápticos/metabolismo , Núcleos Septales/citología , Núcleos Septales/metabolismo
3.
Annu Rev Cell Dev Biol ; 25: 161-95, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19575668

RESUMEN

The most impressive structural feature of the nervous system is the specificity of its synaptic connections. Even after axons have navigated long distances to reach target areas, they must still choose appropriate synaptic partners from the many potential partners within easy reach. In many cases, axons also select a particular domain of the postsynaptic cell on which to form a synapse. Thus, synapse formation is selective at both cellular and subcellular levels. Unsurprisingly, the nervous system uses multiple mechanisms to ensure proper connectivity; these include complementary labels, coordinated growth of synaptic partners, sorting of afferents, prohibition or elimination of inappropriate synapses, respecification of targets, and use of short-range guidance mechanisms or intermediate targets. Specification of any circuit is likely to involve integration of multiple mechanisms. Recent studies of vertebrate and invertebrate systems have led to the identification of molecules that mediate a few of these interactions.


Asunto(s)
Sistema Nervioso/metabolismo , Sinapsis/metabolismo , Animales , Axones/metabolismo , Dendritas/metabolismo , Modelos Neurológicos , Neuronas/metabolismo , Transmisión Sináptica
4.
Int J Mol Sci ; 23(2)2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-35054796

RESUMEN

The Tabula Gallus is a proposed project that aims to create a map of every cell type in the chicken body and chick embryos. Chickens (Gallus gallus) are one of the most recognized model animals that recapitulate the development and physiology of mammals. The Tabula Gallus will generate a compendium of single-cell transcriptome data from Gallus gallus, characterize each cell type, and provide tools for the study of the biology of this species, similar to other ongoing cell atlas projects (Tabula Muris and Tabula Sapiens/Human Cell Atlas for mice and humans, respectively). The Tabula Gallus will potentially become an international collaboration between many researchers. This project will be useful for the basic scientific study of Gallus gallus and other birds (e.g., cell biology, molecular biology, developmental biology, neuroscience, physiology, oncology, virology, behavior, ecology, and evolution). It will eventually be beneficial for a better understanding of human health and diseases.


Asunto(s)
Pollos/fisiología , Animales , Evolución Biológica , Embrión de Pollo , Pollos/genética , Biología Computacional , Conectoma , Epigénesis Genética , Transcriptoma/genética
5.
Nat Methods ; 15(6): 429-432, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29736000

RESUMEN

Thus far, optical recording of neuronal activity in freely behaving animals has been limited to a thin axial range. We present a head-mounted miniaturized light-field microscope (MiniLFM) capable of capturing neuronal network activity within a volume of 700 × 600 × 360 µm3 at 16 Hz in the hippocampus of freely moving mice. We demonstrate that neurons separated by as little as ~15 µm and at depths up to 360 µm can be discriminated.


Asunto(s)
Hipocampo/citología , Hipocampo/fisiología , Miniaturización/instrumentación , Neuronas/fisiología , Animales , Microscopía Intravital/instrumentación , Microscopía Intravital/métodos , Ratones , Imagen Óptica/instrumentación , Imagen Óptica/métodos
6.
Nat Methods ; 15(6): 469, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29786093

RESUMEN

In the version of this Brief Communication originally published online, ref. 21 included details for a conference paper (Pegard, N. C. et al. Paper presented at Novel Techniques in Microscopy: Optics in the Life Sciences, Vancouver, BC, Canada, 12-15 April 2015). The correct reference is the following: Pégard, N. C. et al. Optica 3, 517-524 (2016). This error has been corrected in the print, HTML and PDF versions of the paper.

7.
Nature ; 524(7566): 466-470, 2015 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-26287463

RESUMEN

In the mammalian retina, processes of approximately 70 types of interneurons form specific synapses on roughly 30 types of retinal ganglion cells (RGCs) in a neuropil called the inner plexiform layer. Each RGC type extracts salient features from visual input, which are sent deeper into the brain for further processing. The specificity and stereotypy of synapses formed in the inner plexiform layer account for the feature-detecting ability of RGCs. Here we analyse the development and function of synapses on one mouse RGC type, called the W3B-RGC. These cells have the remarkable property of responding when the timing of the movement of a small object differs from that of the background, but not when they coincide. Such cells, known as local edge detectors or object motion sensors, can distinguish moving objects from a visual scene that is also moving. We show that W3B-RGCs receive strong and selective input from an unusual excitatory amacrine cell type known as VG3-AC (vesicular glutamate transporter 3). Both W3B-RGCs and VG3-ACs express the immunoglobulin superfamily recognition molecule sidekick 2 (Sdk2), and both loss- and gain-of-function studies indicate that Sdk2-dependent homophilic interactions are necessary for the selectivity of the connection. The Sdk2-specified synapse is essential for visual responses of W3B-RGCs: whereas bipolar cells relay visual input directly to most RGCs, the W3B-RGCs receive much of their input indirectly, via the VG3-ACs. This non-canonical circuit introduces a delay into the pathway from photoreceptors in the centre of the receptive field to W3B-RGCs, which could improve their ability to judge the synchrony of local and global motion.


Asunto(s)
Inmunoglobulina G/metabolismo , Proteínas de la Membrana/metabolismo , Percepción de Movimiento/fisiología , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/fisiología , Vías Visuales/fisiología , Células Amacrinas/citología , Células Amacrinas/fisiología , Animales , Femenino , Inmunoglobulina G/genética , Masculino , Proteínas de la Membrana/genética , Ratones , Movimiento (Física) , Mutación , Sinapsis/genética , Sinapsis/metabolismo
8.
Proc Natl Acad Sci U S A ; 115(9): 2126-2131, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29440485

RESUMEN

Sensitive and specific antibodies are essential for detecting molecules in cells and tissues. However, currently used polyclonal and monoclonal antibodies are often less specific than desired, difficult to produce, and available in limited quantities. A promising recent approach to circumvent these limitations is to employ chemically defined antigen-combining domains called "nanobodies," derived from single-chain camelid antibodies. Here, we used nanobodies to prepare sensitive unimolecular detection reagents by genetically fusing cDNAs encoding nanobodies to enzymatic or antigenic reporters. We call these fusions between a reporter and a nanobody "RANbodies." They can be used to localize epitopes and to amplify signals from fluorescent proteins. They can be generated and purified simply and in unlimited amounts and can be preserved safely and inexpensively in the form of DNA or digital sequence.


Asunto(s)
ADN Complementario/química , Anticuerpos de Dominio Único/fisiología , Secuencia de Aminoácidos , Animales , Especificidad de Anticuerpos , Reacciones Antígeno-Anticuerpo , Camelus/inmunología , ADN Complementario/metabolismo , Ensayo de Inmunoadsorción Enzimática , Proteínas Fluorescentes Verdes/metabolismo , Inmunohistoquímica , Sensibilidad y Especificidad , Anticuerpos de Dominio Único/química
9.
J Neurosci ; 39(25): 4889-4908, 2019 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-30952812

RESUMEN

Optical tools for simultaneous perturbation and measurement of neural activity open the possibility of mapping neural function over wide areas of brain tissue. However, spectral overlap of actuators and reporters presents a challenge for their simultaneous use, and optical scattering and out-of-focus fluorescence in tissue degrade resolution. To minimize optical crosstalk, we combined an optimized variant (eTsChR) of the most blue-shifted channelrhodopsin reported to-date with a nuclear-localized red-shifted Ca2+ indicator, H2B-jRGECO1a. To perform wide-area optically sectioned imaging in tissue, we designed a structured illumination technique that uses Hadamard matrices to encode spatial information. By combining these molecular and optical approaches we made wide-area functional maps in acute brain slices from mice of both sexes. The maps spanned cortex and striatum and probed the effects of antiepileptic drugs on neural excitability and the effects of AMPA and NMDA receptor blockers on functional connectivity. Together, these tools provide a powerful capability for wide-area mapping of neuronal excitability and functional connectivity in acute brain slices.SIGNIFICANCE STATEMENT A new technique for simultaneous optogenetic stimulation and calcium imaging across wide areas of brain slice enables high-throughput mapping of neuronal excitability and synaptic transmission.


Asunto(s)
Anticonvulsivantes/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Hipocampo/efectos de los fármacos , Neuronas/efectos de los fármacos , Imagen Óptica/métodos , Transmisión Sináptica/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Animales , Células HEK293 , Humanos , Ratones , Red Nerviosa/efectos de los fármacos , Optogenética , Estimulación Luminosa , Ratas
10.
Nature ; 451(7177): 465-9, 2008 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-18216854

RESUMEN

Synaptic circuits in the retina transform visual input gathered by photoreceptors into messages that retinal ganglion cells (RGCs) send to the brain. Processes of retinal interneurons (amacrine and bipolar cells) form synapses on dendrites of RGCs in the inner plexiform layer (IPL). The IPL is divided into at least 10 parallel sublaminae; subsets of interneurons and RGCs arborize and form synapses in just one or a few of them. These lamina-specific circuits determine the visual features to which RGC subtypes respond. Here we show that four closely related immunoglobulin superfamily (IgSF) adhesion molecules--Dscam (Down's syndrome cell adhesion molecule), DscamL (refs 6-9), Sidekick-1 and Sidekick-2 (ref. 10)--are expressed in chick by non-overlapping subsets of interneurons and RGCs that form synapses in distinct IPL sublaminae. Moreover, each protein is concentrated within the appropriate sublaminae and each mediates homophilic adhesion. Loss- and gain-of-function studies in vivo indicate that these IgSF members participate in determining the IPL sublaminae in which synaptic partners arborize and connect. Thus, vertebrate Dscams, like Drosophila Dscams, play roles in neural connectivity. Together, our results on Dscams and Sidekicks suggest the existence of an IgSF code for laminar specificity in retina and, by implication, in other parts of the central nervous system.


Asunto(s)
Proteínas del Ojo/metabolismo , Inmunoglobulinas/química , Proteínas de la Membrana/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Retina/citología , Retina/metabolismo , Sinapsis/metabolismo , Animales , Adhesión Celular , Línea Celular , Embrión de Pollo , Proteínas del Ojo/genética , Perfilación de la Expresión Génica , Humanos , Interneuronas/metabolismo , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Moléculas de Adhesión de Célula Nerviosa/deficiencia , Moléculas de Adhesión de Célula Nerviosa/genética , Especificidad de Órganos
11.
Nature ; 452(7186): 478-82, 2008 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-18368118

RESUMEN

The retina contains complex circuits of neurons that extract salient information from visual inputs. Signals from photoreceptors are processed by retinal interneurons, integrated by retinal ganglion cells (RGCs) and sent to the brain by RGC axons. Distinct types of RGC respond to different visual features, such as increases or decreases in light intensity (ON and OFF cells, respectively), colour or moving objects. Thus, RGCs comprise a set of parallel pathways from the eye to the brain. The identification of molecular markers for RGC subsets will facilitate attempts to correlate their structure with their function, assess their synaptic inputs and targets, and study their diversification. Here we show, by means of a transgenic marking method, that junctional adhesion molecule B (JAM-B) marks a previously unrecognized class of OFF RGCs in mice. These cells have asymmetric dendritic arbors aligned in a dorsal-to-ventral direction across the retina. Their receptive fields are also asymmetric and respond selectively to stimuli moving in a soma-to-dendrite direction; because the lens reverses the image of the world on the retina, these cells detect upward motion in the visual field. Thus, JAM-B identifies a unique population of RGCs in which structure corresponds remarkably to function.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Movimiento (Física) , Retina/citología , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/metabolismo , Animales , Biomarcadores/análisis , Recuento de Células , Forma de la Célula , Dendritas/metabolismo , Inmunoglobulinas , Ratones , Modelos Neurológicos , Estimulación Luminosa , Retina/efectos de la radiación , Células Ganglionares de la Retina/efectos de la radiación
12.
J Neurosci ; 32(41): 14402-14, 2012 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-23055510

RESUMEN

Bipolar, amacrine, and retinal ganglion cells elaborate arbors and form synapses within the inner plexiform layer (IPL) of the vertebrate retina. Specific subsets of these neuronal types synapse in one or a few of the ≥10 sublaminae of the IPL. Four closely related Ig superfamily transmembrane adhesion molecules--Sidekick1 (Sdk1), Sdk2, Dscam, and DscamL--are expressed by non-overlapping subsets of chick retinal neurons and promote their lamina-specific arborization (Yamagata and Sanes, 2008). Here, we asked whether contactins (Cntns), six homologs of Sdks and Dscams, are expressed by and play roles in other subsets. In situ hybridization showed that cntn1-5 were differentially expressed by subsets of amacrine cells. Immunohistochemistry showed that each Cntn protein was concentrated in a subset of IPL sublaminae. To assess roles of Cntns in retinal development, we focused on Cntn2. Depletion of Cntn2 by RNA interference markedly reduced the ability of Cntn2-positive cells to restrict their arbors to appropriate sublaminae. Conversely, ectopic expression of cntn2 redirected neurites of transduced neurons to the Cntn2-positive sublaminae. Thus, both loss- and gain-of-function strategies implicate Cntn2 in lamina-specific neurite targeting. Studies in heterologous cells showed that Cntn2 mediates homophilic adhesion, but does not bind detectably to Sdks, Dscams, or other Cntns. Overexpression analysis showed that Cntns1 and 3 can also redirect neurites to appropriate sublaminae. We propose that Cntns, Sdks, and Dscams comprise an Ig superfamily code that uses homophilic interactions to promote lamina-specific targeting of retinal dendrites in IPL.


Asunto(s)
Contactina 2/fisiología , Regulación del Desarrollo de la Expresión Génica , Idiotipos de Inmunoglobulinas/genética , Retina/embriología , Retina/metabolismo , Animales , Membrana Basal/metabolismo , Pollos , Contactina 2/biosíntesis , Contactina 2/genética , Contactinas/biosíntesis , Contactinas/fisiología , Femenino , Células HEK293 , Humanos , Idiotipos de Inmunoglobulinas/biosíntesis , Células K562 , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados
13.
F1000Res ; 12: 877, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38303760

RESUMEN

Scientists write research articles, process ethics reviews, evaluate proposals and research, and seek funding. Several strategies have been proposed to optimize these operations and to decentralize access to research resources and opportunities. For instance, we previously proposed the trinity review method, combining registered reports with financing and research ethics assessments. However, previously proposed systems have a number of shortcomings, including how to implement them, e.g., who manages them, how incentives for reviewers are paid, etc. Various solutions have been proposed to address these issues, employing methods based on blockchain technologies, called "decentralized science (DeSci)". Decentralized approaches that exploit these developments offer potentially profound improvements to the troubled scientific ecosystem. Here, we propose a system that integrates ethics reviews, peer reviews, and funding in a decentralized manner, based on Web3 technology. This new method, named ABCDEF publishing, would enhance the speed, fairness, and transparency of scientific research and publishing.


Asunto(s)
Edición , Revisión por Pares , Escritura
14.
J Neurosci ; 31(21): 7753-62, 2011 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-21613488

RESUMEN

The retina contains ganglion cells (RGCs) that respond selectively to objects moving in particular directions. Individual members of a group of ON-OFF direction-selective RGCs (ooDSGCs) detect stimuli moving in one of four directions: ventral, dorsal, nasal, or temporal. Despite this physiological diversity, little is known about subtype-specific differences in structure, molecular identity, and projections. To seek such differences, we characterized mouse transgenic lines that selectively mark ooDSGCs preferring ventral or nasal motion as well as a line that marks both ventral- and dorsal-preferring subsets. We then used the lines to identify cell surface molecules, including Cadherin 6, CollagenXXVα1, and Matrix metalloprotease 17, that are selectively expressed by distinct subsets of ooDSGCs. We also identify a neuropeptide, CART (cocaine- and amphetamine-regulated transcript), that distinguishes all ooDSGCs from other RGCs. Together, this panel of endogenous and transgenic markers distinguishes the four ooDSGC subsets. Patterns of molecular diversification occur before eye opening and are therefore experience independent. They may help to explain how the four subsets obtain distinct inputs. We also demonstrate differences among subsets in their dendritic patterns within the retina and their axonal projections to the brain. Differences in projections indicate that information about motion in different directions is sent to different destinations.


Asunto(s)
Percepción de Movimiento/fisiología , Estimulación Luminosa/métodos , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/metabolismo , Vías Visuales/citología , Vías Visuales/metabolismo , Animales , Axones/metabolismo , Axones/ultraestructura , Cadherinas/biosíntesis , Dendritas/metabolismo , Dendritas/ultraestructura , Metaloproteinasas de la Matriz Asociadas a la Membrana/biosíntesis , Ratones , Ratones Transgénicos , Retina/citología , Retina/metabolismo
15.
J Neurosci ; 30(10): 3579-88, 2010 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-20219992

RESUMEN

Four transmembrane adhesion molecules-Sidekick-1, Sidekick-2, Down's syndrome cell adhesion molecule (Dscam), and Dscam-like-are determinants of lamina-specific synapse formation in the vertebrate retina. Their C termini are predicted to bind postsynaptic density (PSD)-95/Discs Large/ZO-1 (PDZ) domains, which are present in many synaptic scaffolding proteins. We identify members of the membrane-associated guanylate kinase with inverted orientation (MAGI) and PSD-95 subfamilies of multi-PDZ domain proteins as binding partners for Sidekicks and Dscams. Specific MAGI and PSD-95 family members are present in distinct subsets of retinal synapses, as are Sidekicks and Dscams. Using Sidekick-2 as an exemplar, we show that its PDZ-binding C terminus is required for both its synaptic localization in photoreceptors and its ability to promote lamina-specific arborization of presynaptic and postsynaptic processes in the inner plexiform layer. In photoreceptor synapses that contain both MAGI-1 and PSD-95, Sidekick-2 preferentially associates with MAGI-1. Depletion of MAGI-1 from photoreceptors by RNA interference blocks synaptic localization of Sidekick-2 in photoreceptors without affecting localization of PSD-95. Likewise, depletion of MAGI-2 from retinal ganglion cells and interneurons interferes with Sidekick-2-dependent laminar targeting of processes. These results demonstrate that localization and function of Sidekick-2 require its incorporation into a MAGI-containing synaptic scaffold.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Inmunoglobulina G/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/fisiología , Proteínas Asociadas a Matriz Nuclear/metabolismo , Sinapsis/metabolismo , Proteínas Adaptadoras Transductoras de Señales/análisis , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Moléculas de Adhesión Celular , Línea Celular , Pollos , Guanilato-Quinasas , Humanos , Inmunoglobulina G/análisis , Inmunoglobulina G/fisiología , Proteínas de la Membrana/análisis , Ratones , Datos de Secuencia Molecular , Proteínas Asociadas a Matriz Nuclear/análisis , Proteínas Asociadas a Matriz Nuclear/fisiología , Células Ganglionares de la Retina/química , Células Ganglionares de la Retina/fisiología , Sinapsis/fisiología
16.
Curr Opin Cell Biol ; 15(5): 621-32, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-14519398

RESUMEN

Formation, differentiation and plasticity of synapses, the specialized cell-cell contacts through which neurons communicate, all require interactions between pre- and post-synaptic partners. Several synaptically localized adhesion molecules potentially capable of mediating these interactions have been identified recently. Functional studies suggest roles for some of them in target recognition (e.g. SYG-1 and sidekicks), formation and alignment of synaptic specializations (e.g. SynCAM, neuroligin and neurexin), and regulation of synaptic structure and function (e.g. cadherins and syndecan).


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Citoesqueleto/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Secuencia de Aminoácidos/fisiología , Animales , Axones/metabolismo , Cadherinas/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Unión al GTP/metabolismo , Inmunoglobulinas/genética , Inmunoglobulinas/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Moléculas de Adhesión de Célula Nerviosa/genética , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Estructura Terciaria de Proteína , Vesículas Sinápticas/metabolismo
17.
Bio Protoc ; 11(15): e4105, 2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34458399

RESUMEN

The abilities to mark and manipulate specific cell types are essential for an increasing number of functional, structural, molecular, and developmental analyses in model organisms. In a few species, this can be accomplished by germline transgenesis; in other species, other methods are needed to selectively label somatic cells based on the genes that they express. Here, we describe a method for CRISPR-based somatic integration of reporters or Cre recombinase into specific genes in the chick genome, followed by visualization of cells in the retina and midbrain. Loci are chosen based on an RNA-seq-based cell atlas. Reporters can be soluble to visualize the morphology of individual cells or appended to the encoded protein to assess subcellular localization. We call the method eCHIKIN for electroporation- and CRISPR-mediated Homology-instructed Knock-IN.

18.
Elife ; 102021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33393903

RESUMEN

Retinal structure and function have been studied in many vertebrate orders, but molecular characterization has been largely confined to mammals. We used single-cell RNA sequencing (scRNA-seq) to generate a cell atlas of the chick retina. We identified 136 cell types plus 14 positional or developmental intermediates distributed among the six classes conserved across vertebrates - photoreceptor, horizontal, bipolar, amacrine, retinal ganglion, and glial cells. To assess morphology of molecularly defined types, we adapted a method for CRISPR-based integration of reporters into selectively expressed genes. For Müller glia, we found that transcriptionally distinct cells were regionally localized along the anterior-posterior, dorsal-ventral, and central-peripheral retinal axes. We also identified immature photoreceptor, horizontal cell, and oligodendrocyte types that persist into late embryonic stages. Finally, we analyzed relationships among chick, mouse, and primate retinal cell classes and types. Our results provide a foundation for anatomical, physiological, evolutionary, and developmental studies of the avian visual system.


The evolutionary relationships of organisms and of genes have long been studied in various ways, including genome sequencing. More recently, the evolutionary relationships among the different types of cells that perform distinct roles in an organism, have become a subject of inquiry. High throughput single-cell RNA sequencing is a technique that allows scientists to determine what genes are switched on in single cells. This technique makes it possible to catalogue the cell types that make up a tissue and generate an atlas of the tissue based on what genes are switched on in each cell. The atlases can then be compared among species. The retina is a light-sensitive tissue that animals with a backbone, called vertebrates, use to see. The basic plan of the retina is very similar in vertebrates: five classes of neurons ­ the cells that make up the nervous system ­ are arranged into three layers. The chicken is a highly visual animal and it has frequently been used to study the development of the retina, from understanding how unspecialized embryonic cells become neurons to examining how circuits of neurons form. The structure and role of the retina have been studied in many vertebrates, but detailed descriptions of this tissue at the molecular level have been largely limited to mammals. To bridge this gap, Yamagata, Yan and Sanes generated the first cell atlas of the chicken retina. Additionally, they developed a gene editing-based technique based on CRISPR technology called eCHIKIN to label different cell types based on genes each type switched on selectively, providing a means of matching their shape and location to their molecular identity. Using these methods, it was possible to subdivide each of the five classes of neurons in the retina into multiple distinct types for a total of 136. The atlas provided a foundation for evolutionary analysis of how retinas evolve to serve the very different visual needs of different species. The chicken cell types could be compared to types previously identified in similar studies of mouse and primate retinas. Comparing the relationships among retinal cells in chickens, mice and primates revealed strong similarities in the overall cell classes represented. However, the results also showed big differences among species in the specific types within each class, and the genes that were switched on within each cell type. These findings may provide a foundation to study the anatomy, physiology, evolution, and development of the avian visual system. Until now, neural development of the chicken retina was being studied without comprehensive knowledge of its cell types or the developmentally important genes they express. The system developed by Yamagata, Yan and Sanes may be used in the future to learn more about vision and to investigate how neural cell types evolve to match the repertoire of each species to its environment.


Asunto(s)
Pollos/anatomía & histología , Células Fotorreceptoras de Vertebrados/fisiología , Retina/fisiología , Animales , Embrión de Pollo/citología , Embrión de Pollo/embriología , Embrión de Pollo/fisiología , Perfilación de la Expresión Génica , Células Fotorreceptoras de Vertebrados/citología , RNA-Seq , Retina/citología , Retina/embriología , Análisis de la Célula Individual
19.
Front Mol Neurosci ; 13: 139, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32982686

RESUMEN

Many of the immunoglobulin superfamily (IgSF) molecules play pivotal roles in cell communication. The Sidekick (Sdk) gene, first described in Drosophila, encodes the single-pass transmembrane protein, Sdk, which is one of the largest among IgSF membrane proteins. Sdk first appeared in multicellular animals during the Precambrian age and later evolved to Sdk1 and Sdk2 in vertebrates by gene duplication. In flies, a single Sdk is involved in positioning photoreceptor neurons and their axons in the visual system and is responsible for dynamically rearranging cell shapes by strictly populating tricellular adherens junctions in epithelia. In vertebrates, Sdk1 and Sdk2 are expressed by unique sets of cell types and distinctively participate in the formation and/or maintenance of neural circuits in the retina, indicating that they are determinants of synaptic specificity. These functions are mediated by specific homophilic binding of their ectodomains and by intracellular association with PDZ scaffold proteins. Recent human genetic studies as well as animal experiments implicate that Sdk genes may influence various neurodevelopmental and psychiatric disorders, such as autism spectrum disorders, attention-deficit hyperactivity disorder, addiction, and depression. The gigantic Sdk1 gene is susceptible to erratic gene rearrangements or mutations in both somatic and germ-line cells, potentially contributing to neurological disorders and some types of cancers. This review summarizes what is known about the structure and roles of Sdks.

20.
Front Mol Neurosci ; 11: 142, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29760652

RESUMEN

Classical cadherins, a set of ~20 related recognition and signaling molecules, have been implicated in many aspects of neural development, including the formation and remodeling of synapses. Mechanisms underlying some of these steps have been studied by expressing N-cadherin (cdh2), a Type 1 cadherin, in heterologous cells, but analysis is complicated because widely used lines express cdh2 endogenously. We used CRISPR-mediated gene editing to generate a Human embryonic kidney (HEK)293 variant lacking Cdh2, then compared the behavior of rodent cortical and hippocampal neurons co-cultured with parental, cdh2 mutant and cdh2-rescued 293 lines. The comparison demonstrated that Cdh2 promotes neurite branching and that it is required for three synaptic organizers, neurologin1 (NLGL1), leucine-rich repeat transmembrane protein 2 (LRRtm2), and Cell Adhesion Molecule 1 (Cadm1/SynCAM) to stimulate presynaptic differentiation, assayed by clustering of synaptic vesicles at sites of neurite-293 cell contact. Similarly, Cdh2 is required for a presynaptic organizing molecule, Neurexin1ß, to promote postsynaptic differentiation in dendrites. We also show that another Type I cadherin, Cdh4, and a Type II cadherin, Cdh6, can substitute for Cdh2 in these assays. Finally, we provide evidence that the effects of cadherins require homophilic interactions between neurites and the heterologous cells. Together, these results indicate that classical cadherins act together with synaptic organizers to promote synaptic differentiation, perhaps in part by strengthening the intracellular adhesion required for the organizers to act efficiently. We propose that cadherins promote high affinity contacts between appropriate partners, which then enable synaptic differentiation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA