Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 96(32): 13291-13298, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39083756

RESUMEN

Mass analysis in an ion trap is conventionally realized through time domain analysis of the ejected ion current collected from an electron multiplier (EM), in which the ion ejection time is found to have a correlation with the mass-to-charge (m/z) ratio of the ion. In this study, we investigated a new method for mass analysis by examining ion ejection signals in the frequency domain. Theoretical analysis and ion trajectory simulations show that ions of the same m/z ratio are ejected from an ion trap at regular intervals, producing a periodic pulsed signal on the EM. The period of this pulsed ejection signal is directly linked to the m/z values of the ions. To realize this method experimentally, a broadband preamplifier was built and integrated on a miniature ion trap mass spectrometer (the "Brick" series from Nier Inc.) to capture this pulsed ion ejection signal collected from the EM. Experimental results were in good agreement with theoretical and simulation analyses. This method has the potential to improve the mass resolution of an ion trap mass analyzer. As a proof-of-concept demonstration, a peak width of 0.1 Da at a m/z value of 281 was achieved in experiments.

2.
Anal Chem ; 96(5): 2183-2190, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38247304

RESUMEN

In miniature ion trap mass spectrometry, achieving a balance between isolation resolution and efficiency is a formidable challenge. The presence of absorption curves causes target ions to inadvertently absorb energy from AC signal components near their resonant frequencies. To mitigate this issue, SAM-SFM waveforms introduce a parameter known as the decreasing factor. Unlike SWIFT waveforms, SAM-SFM's spectral profile intentionally departs from a rectangular window, adopting an arch-shaped excitation window to minimize the impact on target ions and improve ion isolation efficiency. SAM-SFM waveforms have the advantage of low computational complexity, enabling real-time computation using an embedded FPGA technology. Regardless of any parameter changes, the FPGA can consistently guarantee waveform output within 1 µs. This not only enhances throughput but also eliminates the need for a PC in miniature mass spectrometry devices. The performance of SAM-SFM has been validated on an improved "Brick" miniature ion trap mass spectrometer. Comparative experiments with SWIFT waveforms confirm the lossless unit-mass isolation capabilities of SAM-SFM. This waveform has the capability to simultaneously isolate multiple target ions, even allowing for the lossless isolation of ions with lower abundance within isotopic clusters, albeit at the cost of requiring extended isolation durations.

3.
Anal Methods ; 15(10): 1345-1354, 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36815265

RESUMEN

The relatively high work pressure within an ion trap has limited the implementation of the Fourier transform technique for high resolution mass analysis. The main reason is that high buffer gas pressure will cause the rapid decay of ion oscillations. In this study, an image current splicing method based on the filter diagonalization method (FDM) and the Hilbert transform was developed to increase the resolving power of nondestructive mass analysis in a linear ion trap. First, multiple repeated experiments (or ion trajectory simulations) were performed to collect multiple sets of data. Using the FDM, the frequency component distribution was extracted from short image current transients collected from each experiment. The Hilbert transform was then applied to calculate and normalize the decay envelope of each transient. The relative abundance was calculated by counting the envelopes. Finally, image current transients collected from these multiple experiments were spliced and merged into a whole signal with much longer duration and continuous phase. This splicing method could effectively increase the duration of the image current, and thus improve the mass resolution of the ion trap mass analyzer. The mass resolution (m/Δm) was improved from 183.5 to 5.8 × 103, and the average relative difference was 2.8%. The proposed method resolved 3 adjacent peaks which originally could not be resolved from the raw signal by the fast Fourier transform (FFT). Besides simulated data, this method was also applied to the experimental data collected from a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. The influence of electronic noise on the proposed method was also discussed in this study.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA