Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 24(4): 1447-1453, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38252892

RESUMEN

Passive solar heating and radiative cooling have attracted great interest in global energy consumption reduction due to their unique electricity-free advantage. However, static single radiation cooling or solar heating would lead to overcooling or overheating in cold and hot weather, respectively. To achieve a facile, effective approach for dynamic thermal management, a novel structured polyethylene (PE) film was engineered with a switchable cooling and heating mode obtained through a moisture transfer technique. The 100 µm PE film showed excellent solar modulation from 0.92 (dried state) to 0.32 (wetted state) and thermal modulation from 0.86 (dried state) to 0.05 (wetted state). Outdoor experiments demonstrated effective thermal regulation during both daytime and nighttime. Furthermore, our designed PE film can save 1.3-41.0% of annual energy consumption across the whole country of China. This dual solar and thermal regulation mechanism is very promising for guiding scalable approaches to energy-saving temperature regulation.

2.
Small ; : e2312226, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38511539

RESUMEN

Ice accretion can significantly impact the efficiency and safety of outdoor equipment. Solar-thermal superhydrophobic surface is an effective strategy for anti-icing and deicing. However, droplets easily turn to the Wenzel state during the icing and melting cycle processes, significantly increasing the adhesion and making the droplets difficult to remove from the surface. In this work, a triple-scale solar-thermal superhydrophobic surface is prepared on stainless steel 304 by etching, in situ oxidation, and spin-coating TiN nanoparticles for highly efficient deicing and anti-icing. The multi-scale structure enabled the droplets to recover the Cassie state completely after melting. The contact angle decreased from 162.5° to 136.7° during the icing process and gradually increased to 162.1° during the melting process. In addition, metal oxides and TiN nanoparticles enabled the superhydrophobic surface to exhibit a high solar absorptivity ( α ¯ solar ${{\bar{\alpha }}_{{\mathrm{solar}}}}$ = 0.925). The synergistic effect of the superhydrophobicity and the solar-thermal performance endowed the designed multi-scale surface with excellent anti-icing and deicing performance. This work contributed to the practical development of anti-icing and deicing applications based on solar-thermal superhydrophobic surfaces.

3.
Langmuir ; 39(25): 8900-8907, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37294930

RESUMEN

Solar-driven interfacial evaporation has caught wide attention for water purification due to its green and environment-friendly properties. The key issue is how to effectively utilize solar radiation for evaporation. To fully understand the thermal management of the solar evaporation process, a multiphysics model has been built by the finite element method to clarify the heat transfer process for the improvement of solar evaporation. Simulation results indicate that the evaporation performance can be improved by tuning the thermal loss, local heating, convective mass transfer, and evaporation area. The thermal radiation loss of the evaporation interface and thermal convection loss to the bottom water should be avoided, and local heating is good for evaporation. Convection above the interface can improve evaporation performance, although it would enhance the thermal convective loss. In addition, evaporation also can be improved by increasing the evaporation area from 2D to 3D structures. Experimental results confirm that the solar evaporation ratio can be improved from 0.795 kg m-2 h-1 to 1.122 kg m-2 h-1 at 1 sun with a 3D interface and thermal insulation between the interface and bottom water. These results can provide a design principle for the solar evaporation system based on thermal management.

4.
Inflamm Res ; 72(9): 1811-1828, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37665342

RESUMEN

BACKGROUND: Intervertebral disc degeneration (IDD) is a leading cause of low back pain (LBP), posing a significant socioeconomic burden. Recent studies highlight the crucial role of inflammatory microenvironment in IDD progression. METHOD: A keyword-based search was performed using the PubMed database for published articles. RESULTS AND CONCLUSIONS: Dysregulated expression of inflammatory cytokines disrupts intervertebral disc (IVD) homeostasis, causing atrophy, fibrosis, and phenotypic changes in nucleus pulposus cells. Modulating the inflammatory microenvironment and restoring cytokine balance hold promise for IVD repair and regeneration. This comprehensive review systematically examines the expression regulation, pathological effects, therapeutic strategies, and future challenges associated with the inflammatory microenvironment and relevant cytokines in IDD. Key inflammatory cytokines, including interleukins (IL), tumor necrosis factor-alpha (TNF-α), and chemokines, exhibit significant pathological effects in IDD. Furthermore, major therapeutic modalities such as chemical antagonists, biologics, plant extracts, and gene transcription therapies are introduced to control and ameliorate the inflammatory microenvironment. These approaches provide valuable insights for identifying potential targets in future anti-inflammatory treatments for IDD.

5.
J Thromb Thrombolysis ; 53(3): 722-730, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35028829

RESUMEN

The clinical symptoms of perforating arteries differ, and responses to intravenous thrombolytic therapy are heterogeneous. Here, we investigated the effect of intravenous thrombolytic therapy and the related factors influencing acute perforating and non-perforating middle cerebral artery infarctions. We analyzed 320 patients with acute middle cerebral artery infarction who received alteplase thrombolysis within 4.5 h of onset at two stroke centers from January 2016 to December 2019. Outcome measures included rates of a favorable functional outcome (modified Rankin Scale scores of 0-2), distribution of modified Rankin Scale scores, intracranial hemorrhage, and symptomatic cerebral hemorrhage at 14 days, with comparisons between perforating artery and non-perforating artery cerebral infarction groups. In the perforating vessel disease group, 12 cases (17.4%) of intracranial hemorrhage occurred, with symptomatic cerebral hemorrhage in three cases (4.3%); there were no significant differences between the perforating and non-perforating vessel disease groups (all P > 0.05). In the perforating vessel disease group, the only significant prognostic factor was the National Institutes of Health Stroke Scale score before thrombolysis (Exp(B) = 1.365; 95% confidence interval [CI] 1.124-1.659; P = 0.002), and the only significant risk factor for hemorrhagic transformation was previous perforator disease (Exp(B) = 0.078; P = 0.038). Regardless of whether an acute infarction is perforating or non-perforating, intravenous thrombolytic therapy can yield a favorable outcome. Therefore, intravenous thrombolysis should be actively administered to treat perforating artery infarctions with a high risk of disability.


Asunto(s)
Isquemia Encefálica , Infarto de la Arteria Cerebral Media , Isquemia Encefálica/tratamiento farmacológico , Hemorragia Cerebral/inducido químicamente , Fibrinolíticos/efectos adversos , Humanos , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Hemorragias Intracraneales/etiología , Factores de Riesgo , Terapia Trombolítica/efectos adversos , Activador de Tejido Plasminógeno/efectos adversos , Resultado del Tratamiento
6.
Nano Lett ; 21(3): 1412-1418, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33524258

RESUMEN

Passive daytime radiative cooling (PDRC) has drawn significant attention recently for electricity-free cooling. Porous polymers are attractive for PDRC since they have excellent performance and scalability. A fundamental question remaining is how PDRC performance depends on pore properties (e.g., radius, porosity), which is critical to guiding future structure designs. In this work, optical simulations are carried out to answer this question, and effects of pore size, porosity, and thickness are studied. We find that mixed nanopores (e.g., radii of 100 and 200 nm) have a much higher solar reflectance R̅solar (0.951) than the single-sized pores (0.811) at a thickness of 300 µm. With an Al substrate underneath, R̅solar, thermal emittance ε̅LWIR, and net cooling power Pcool reach 0.980, 0.984, and 72 W/m2, respectively, under a semihumid atmospheric condition. These simulation results provide a guide for designing high-performance porous coating for PDRC applications.

7.
Hum Brain Mapp ; 39(7): 2997-3004, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29676512

RESUMEN

Recently, functional magnetic resonance imaging (fMRI) has been increasingly used to assess brain function. Brain entropy is an effective model for evaluating the alteration of brain complexity. Specifically, the sample entropy (SampEn) provides a feasible solution for revealing the brain's complexity. Occupation is one key factor affecting the brain's activity, but the neuropsychological mechanisms are still unclear. Thus, in this article, based on fMRI and a brain entropy model, we explored the functional complexity changes engendered by occupation factors, taking the seafarer as an example. The whole-brain entropy values of two groups (i.e., the seafarers and the nonseafarers) were first calculated by SampEn and followed by a two-sample t test with AlphaSim correction (p < .05). We found that the entropy of the orbital-frontal gyrus (OFG) and superior temporal gyrus (STG) in the seafarers was significantly higher than that of the nonseafarers. In addition, the entropy of the cerebellum in the seafarers was lower than that of the nonseafarers. We conclude that (1) the lower entropy in the cerebellum implies that the seafarers' cerebellum activity had strong regularity and consistency, suggesting that the seafarer's cerebellum was possibly more specialized by the long-term career training; (2) the higher entropy in the OFG and STG possibly demonstrated that the seafarers had a relatively decreased capability for emotion control and auditory information processing. The above results imply that the seafarer occupation indeed impacted the brain's complexity, and also provided new neuropsychological evidence of functional plasticity related to one's career.


Asunto(s)
Cerebelo/fisiología , Entropía , Neuroimagen Funcional/métodos , Plasticidad Neuronal/fisiología , Ocupaciones , Corteza Prefrontal/fisiología , Lóbulo Temporal/fisiología , Adulto , Cerebelo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Personal Militar , Corteza Prefrontal/diagnóstico por imagen , Lóbulo Temporal/diagnóstico por imagen
8.
Exp Cell Res ; 340(2): 227-37, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26748182

RESUMEN

Human induced pluripotent stem cells (hiPSCs) are capable of unlimited self-renewal and can generate nearly all cells in the body. Changes induced by different LSD1 activities on the regulation of hiPSC self-renewal and differentiation and the mechanism underlying such changes were determined. We used two different LSD1 inhibitors (phenelzine sulfate and tranylcypromine) and RNAi technique to inhibit LSD1 activity, and we obtained hiPSCs showing 71.3%, 53.28%, and 31.33% of the LSD1 activity in normal hiPSCs. The cells still maintained satisfactory self-renewal capacity when LSD1 activity was at 71.3%. The growth rate of hiPSCs decreased and cells differentiated when LSD1 activity was at approximately 53.28%. The hiPSCs were mainly arrested in the G0/G1 phase and simultaneously differentiated into endodermal tissue when LSD1 activity was at 31.33%. Teratoma experiments showed that the downregulation of LSD1 resulted in low teratoma volume. When LSD1 activity was below 50%, pluripotency of hiPSCs was impaired, and the teratomas mainly comprised endodermal and mesodermal tissues. This phenomenon was achieved by regulating the critical balance between histone methylation and demethylation at regulatory regions of several key pluripotent and developmental genes.


Asunto(s)
Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Autorrenovación de las Células , Histona Demetilasas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Línea Celular , Histona Demetilasas/antagonistas & inhibidores , Histona Demetilasas/genética , Histonas/metabolismo , Humanos , Metilación , Fenelzina/farmacología , Interferencia de ARN , Tranilcipromina/farmacología
9.
ACS Biomater Sci Eng ; 10(1): 219-233, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38149967

RESUMEN

Low back pain is a common chronic disease that can severely affect the patient's work and daily life. The breakdown of spinal mechanical homeostasis caused by intervertebral disc (IVD) degeneration is a leading cause of low back pain. Annulus fibrosus (AF), as the outer layer structure of the IVD, is often the first affected part. AF injury caused by consistent stress overload will further accelerate IVD degeneration. Therefore, regulating AF injury repair and remodeling should be the primary goal of the IVD repair strategy. Mechanical stimulation has been shown to promote AF regeneration and repair, but most studies only focus on the effect of single stress on AF, and lack realistic models and methods that can mimic the actual mechanical environment of AF. In this article, we review the effects of different types of stress stimulation on AF injury repair and remodeling, suggest possible beneficial load combinations, and explore the underlying molecular mechanisms. It will provide the theoretical basis for designing better tissue engineering therapy using mechanical factors to regulate AF injury repair and remodeling in the future.


Asunto(s)
Anillo Fibroso , Degeneración del Disco Intervertebral , Dolor de la Región Lumbar , Humanos , Anillo Fibroso/metabolismo , Degeneración del Disco Intervertebral/terapia , Degeneración del Disco Intervertebral/metabolismo , Ingeniería de Tejidos , Tratamiento Basado en Trasplante de Células y Tejidos
10.
J Cell Biochem ; 114(10): 2231-9, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23564418

RESUMEN

Mesenchymal stem cells (MSCs) are self-renewing cells that exhibit differentiation capacity and immune regulation ability. These versatile cells have a wide range of potential applications. However, the spontaneous differentiation and aging of MSCs during long-term culturing restrict the amount of cells available for therapies and tissue engineering. Thus, maintaining the biological characteristics of MSCs during long-term culturing is crucial. Chromatic modification via epigenetic regulatory mechanisms (e.g., histone acetylation, deacetylation, and methylation) is crucial in stem cell pluripotency. We investigated the effects of largazole or trichostatin A (TSA), a novel histone deacetylase inhibitor (HDACi), against human umbilical cord (hUC)-MSCs aging. Results show that low concentrations of largazole or TSA can significantly improve hUC-MSCs proliferation and delay hUC-MSCs aging. Largazole can better improve MSCs proliferation than TSA. HDAC is modulate histone H3 acetylation and methylation in the telomerase reverse-transcriptase, octamer-binding transcription factor 4, Nanog, C-X-C chemokine receptor 4, alkaline phosphatase, and osteopontin genes. HDACis can promote hUC-MSCs proliferation and suppress hUC-MSCs spontaneous osteogenic differentiation. HDACis can affect histone H3 lysine 9 or 14 acetylation and histone H3 lysine 4 dimethylation, thus increasing the mRNA expression of pluripotent and proliferative genes and suppressing the spontaneous differentiation of hUC-MSCs.


Asunto(s)
Senescencia Celular/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Células Madre Mesenquimatosas/citología , Cordón Umbilical/citología , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Inmunoprecipitación de Cromatina , Depsipéptidos/farmacología , Humanos , Ácidos Hidroxámicos/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Reacción en Cadena en Tiempo Real de la Polimerasa , Tiazoles/farmacología
11.
ACS Appl Mater Interfaces ; 15(3): 4122-4131, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36642885

RESUMEN

Visibly transparent radiative cooling (VTRC) shows great potential in energy-saving buildings or car glasses for lighting and cooling. How to balance the lighting and cooling performance is of significance to VTRC. In addition, the thermal radiative performance on the inner side should also be determined for cooling. Here, we designed a Janus VTRC coating consisting of a thermal emitter, PDMS, and a transparent near-infrared reflector, TiO2/Ag/TiO2. On the outer side, the visible transmittance T̅vis = 0.70, while the solar reflectance R̅solar = 0.40, and the thermal emittance in the atmospheric window ε̅LWIR = 0.94 can be achieved experimentally. On the inner side, the thermal emittance ε̅IR can be 0.90 or 0.01 depending on the substrate (glass or near-infrared reflector), which acts as the radiative conductor or barrier for energy saving in hot or cold internal situations. Compared with glass, the designed PDMS/NIR/glass achieves an average temperature drop of 14.6 °C experimentally. The energy-saving calculation based on seven cities in China shows that the VTRC coating can save 34-44% of the annual cooling energy consumption. This Janus visibly transparent radiative cooling technology with internal and external regulation provides a potential strategy for energy saving under the requirement of simultaneous lighting and cooling.

12.
Front Aging Neurosci ; 15: 1181558, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37396666

RESUMEN

Introduction: Apathy is a prevalent mood disturbance that occurs in a wide range of populations, including those with normal cognitive aging, mental disorders, neurodegenerative disorders and traumatic brain injuries. Recently, neuroimaging technologies have been employed to elucidate the neural substrates underlying brain disorders accompanying apathy. However, the consistent neural correlates of apathy across normal aging and brain disorders are still unclear. Methods: This paper first provides a brief review of the neural mechanism of apathy in healthy elderly individuals, those with mental disorders, neurodegenerative disorders, and traumatic brain injuries. Further, following the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines, the structural and functional neuroimaging meta-analysis using activation likelihood estimation method is performed on the apathy group with brain disorders and the healthy elderly, aiming at exploring the neural correlates of apathy. Results: The structural neuroimaging meta-analysis showed that gray matter atrophy is associated with apathy in the bilateral precentral gyrus (BA 13/6), bilateral insula (BA 47), bilateral medial frontal gyrus (BA 11), bilateral inferior frontal gyrus, left caudate (putamen) and right anterior cingulate, while the functional neuroimaging meta-analysis suggested that the functional connectivity in putamen and lateral globus pallidus is correlated with apathy. Discussion: Through the neuroimaging meta-analysis, this study has identified the potential neural locations of apathy in terms of brain structure and function, which may offer valuable pathophysiological insights for developing more effective therapeutic interventions for affected patients.

13.
Front Hum Neurosci ; 17: 1095413, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36992794

RESUMEN

Introduction: Studies have revealed that the language network of Broca's area and Wernicke's area is modulated by factors such as disease, gender, aging, and handedness. However, how occupational factors modulate the language network remains unclear. Methods: In this study, taking professional seafarers as an example, we explored the resting-state functional connectivity (RSFC) of the language network with seeds (the original and flipped Broca's area and Wernicke's area). Results: The results showed seafarers had weakened RSFC of Broca's area with the left superior/middle frontal gyrus and left precentral gyrus, and enhanced RSFC of Wernicke's area with the cingulate and precuneus. Further, seafarers had a less right-lateralized RSFC with Broca's area in the left inferior frontal gyrus, while the controls showed a left-lateralized RSFC pattern in Broca's area and a right-lateralized one in Wernicke's area. Moreover, seafarers displayed stronger RSFC with the left seeds of Broca's area and Wernicke's area. Discussion: These findings suggest that years of working experience significantly modulates the RSFC of language networks and their lateralization, providing rich insights into language networks and occupational neuroplasticity.

14.
iScience ; 25(8): 104726, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35865137

RESUMEN

Passive daytime radiative cooling (PDRC) can dissipate heat to outer space with high solar reflectance ( R ¯ solar ) and thermal emittance ( ε ¯ LWIR ) in the atmospheric transmission window. However, for the non-contact heat dissipation, besides the high R ¯ solar , a high infrared transmittance ( τ ¯ LWIR ) is needed to directly emit thermal radiation through the IR-transparent coating to outer space. In this work, An IR-transparent porous PE (P-PE) coating with R ¯ solar = 0.96 and τ ¯ LWIR = 0.88 was prepared for non-contact heat dissipations. Under the direct sunlight of 860 W m-2, the IR-transparent coating obtained a 4°C lower heater temperature than the normal PDRC coating under the same condition. In addition, the spectral reflectance of the P-PE coating after immersing in air or water changed little, which showed excellent durability for long-term outdoor applications. These results indicate the P-PE coating can be a potential IR-transparent coating for non-contact heat dissipations under direct sunlight.

15.
ACS Appl Mater Interfaces ; 14(22): 26255-26263, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35622905

RESUMEN

Solar interfacial evaporation for freshwater harvesting has received attention recently due to its high evaporation rate and environmental friendliness. Traditional interfacial evaporation mostly uses black porous polymers to absorb solar radiation and transport water which involve high thermal radiation loss to the environment and heat conduction loss to the bulk water. In addition, the freshwater collection ratio is usually lower than the solar evaporation ratio due to the high temperature of the condensation surface under solar irradiation, and no freshwater can be harvested at night due to the absence of sunlight. Here, we design an all-day freshwater-harvesting device using a solar-selective absorber (SSA) and sky radiative cooling. The prepared SSA with a high solar absorptance of 0.92 and a mid-infrared thermal emittance of 0.11 provides a great solar-thermal conversion performance (87.1% vs 51.4% for the black porous polymer at 25 °C) by minimizing the thermal radiation loss, and a hollow structure is also used to reduce the conductive heat loss, resulting in a high solar evaporation rate (1.23 vs 0.79 kg m-2 h-1 for the black porous polymer). In addition, a transparent radiative cooling polymer after plasma treatment is used for freshwater collection by enhancing the solar transmittance (0.92) and mid-infrared thermal emittance (0.91 at 25 °C). A theoretical freshwater collection rate of 0.044 kg m-2 h-1 is achieved at night-time. Outdoor results show that the all-day water harvesting is 0.87 kg m-2. This strategy to achieve all-day water collection by coupling with the SSA and transparent radiative cooling has potential application in the field of desalination and freshwater harvesting in tropical desert areas.

16.
Front Neurosci ; 16: 830808, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35368265

RESUMEN

The complexity derived from resting-state functional magnetic resonance imaging (rs-fMRI) data has been applied for exploring cognitive states and occupational neuroplasticity. However, there is little information about the influence of occupational factors on dynamic complexity and topological properties of the connectivity networks. In this paper, we proposed a novel dynamical brain complexity analysis (DBCA) framework to explore the changes in dynamical complexity of brain activity at the voxel level and complexity topology for professional seafarers caused by long-term working experience. The proposed DBCA is made up of dynamical brain entropy mapping analysis and complex network analysis based on brain entropy sequences, which generate the dynamical complexity of local brain areas and the topological complexity across brain areas, respectively. First, the transient complexity of voxel-wise brain map was calculated; compared with non-seafarers, seafarers showed decreased dynamic entropy values in the cerebellum and increased values in the left fusiform gyrus (BA20). Further, the complex network analysis based on brain entropy sequences revealed small-worldness in terms of topological complexity in both seafarers and non-seafarers, indicating that it is an inherent attribute of human the brain. In addition, seafarers showed a higher average path length and lower average clustering coefficient than non-seafarers, suggesting that the information processing ability is reduced in seafarers. Moreover, the reduction in efficiency of seafarers suggests that they have a less efficient processing network. To sum up, the proposed DBCA is effective for exploring the dynamic complexity changes in voxel-wise activity and region-wise connectivity, showing that occupational experience can reshape seafarers' dynamic brain complexity fingerprints.

17.
Front Aging Neurosci ; 14: 1071520, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36688163

RESUMEN

Introduction: Central anosmia is a potential marker of the prodrome and progression of Parkinson's disease (PD). Resting-state functional magnetic resonance imaging studies have shown that olfactory dysfunction is related to abnormal changes in central olfactory-related structures in patients with early PD. Methods: This study, which was conducted at Guanyun People's Hospital, analyzed the resting-state functional magnetic resonance data using the functional covariance connection strength method to decode the functional connectivity between the white-gray matter in a Chinese population comprising 14 patients with PD and 13 controls. Results: The following correlations were observed in patients with PD: specific gray matter areas related to smell (i.e., the brainstem, right cerebellum, right temporal fusiform cortex, bilateral superior temporal gyrus, right Insula, left frontal pole and right superior parietal lobule) had abnormal connections with white matter fiber bundles (i.e., the left posterior thalamic radiation, bilateral posterior corona radiata, bilateral superior corona radiata and right superior longitudinal fasciculus); the connection between the brainstem [region of interest (ROI) 1] and right cerebellum (ROI2) showed a strong correlation. Right posterior corona radiation (ROI11) showed a strong correlation with part 2 of the Unified Parkinson's Disease Rating Scale, and right superior longitudinal fasciculus (ROI14) showed a strong correlation with parts 1, 2, and 3 of the Unified Parkinson's Disease Rating Scale and Hoehn and Yahr Scale. Discussion: The characteristics of olfactory-related brain networks can be potentially used as neuroimaging biomarkers for characterizing PD states. In the future, dynamic testing of olfactory function may help improve the accuracy and specificity of olfactory dysfunction in the diagnosis of neurodegenerative diseases.

18.
Front Neurosci ; 16: 853061, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35310108

RESUMEN

Before the onset of motor symptoms, Parkinson's disease (PD) involves dysfunction of the anterior olfactory nucleus and olfactory bulb, causing olfactory disturbance, commonly resulting in hyposmia in the early stages of PD. Accumulating evidence has shown that blood oxygen level dependent (BOLD) signals in white matter are altered by olfactory disorders and related stimuli, and the signal changes in brain white matter pathways show a certain degree of specificity, which can reflect changes of early olfactory dysfunction in Parkinson's disease. In this study, we apply the functional covariance connectivity (FCC) method to decode FCC of gray and white matter in olfactory-related brain regions in Parkinson's disease. Our results show that the dorsolateral prefrontal, anterior entorhinal cortex and fronto-orbital cortices in the gray matter have abnormal connectivity with the posterior corona radiata and superior corona radiata in white matter in patients with Parkinson's hyposmia. The functional covariance connection strength (FCS) of the right dorsolateral prefrontal cortex and white matter, and the covariance connection strength of the left superior corona radiata and gray matter function have potential diagnostic value. These results demonstrate that alterations in FCC of gray and white matter in olfactory-related brain regions can reflect the change of olfactory function in the early stages of Parkinson's disease, indicating that it could be a potential neuroimaging marker for early diagnosis.

19.
Front Hum Neurosci ; 15: 739668, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34566609

RESUMEN

Many studies reported that spontaneous fluctuation of the blood oxygen level-dependent signal exists in multiple frequency components and changes over time. By assuming a reliable energy contrast between low- and high-frequency bands for each voxel, we developed a novel spectrum contrast mapping (SCM) method to decode brain activity at the voxel-wise level and further validated it in designed experiments. SCM consists of the following steps: first, the time course of each given voxel is subjected to fast Fourier transformation; the corresponding spectrum is divided into low- and high-frequency bands by given reference frequency points; then, the spectral energy ratio of the low- to high-frequency bands is calculated for each given voxel. Finally, the activity decoding map is formed by the aforementioned energy contrast values of each voxel. Our experimental results demonstrate that the SCM (1) was able to characterize the energy contrast of task-related brain regions; (2) could decode brain activity at rest, as validated by the eyes-closed and eyes-open resting-state experiments; (3) was verified with test-retest validation, indicating excellent reliability with most coefficients > 0.9 across the test sessions; and (4) could locate the aberrant energy contrast regions which might reveal the brain pathology of brain diseases, such as Parkinson's disease. In summary, we demonstrated that the reliable energy contrast feature was a useful biomarker in characterizing brain states, and the corresponding SCM showed excellent brain activity-decoding performance at the individual and group levels, implying its potentially broad application in neuroscience, neuroimaging, and brain diseases.

20.
Front Hum Neurosci ; 14: 215, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32760257

RESUMEN

Many studies have revealed the structural or functional brain changes induced by occupational factors. However, it remains largely unknown how occupation-related connectivity shapes the brain. In this paper, we denote occupational neuroplasticity as the neuroplasticity that takes place to satisfy the occupational requirements by extensively professional training and to accommodate the long-term, professional work of daily life, and a critical review of occupational neuroplasticity related to the changes in brain structure and functional networks has been primarily presented. Furthermore, meta-analysis revealed a neurophysiological mechanism of occupational neuroplasticity caused by professional experience. This meta-analysis of functional neuroimaging studies showed that experts displayed stronger activation in the left precentral gyrus [Brodmann area (BA)6], left middle frontal gyrus (BA6), and right inferior frontal gyrus (BA9) than novices, while meta-analysis of structural studies suggested that experts had a greater gray matter volume in the bilateral superior temporal gyrus (BA22) and right putamen than novices. Together, these findings not only expand the current understanding of the common neurophysiological basis of occupational neuroplasticity across different occupations and highlight some possible targets for neural modulation of occupational neuroplasticity but also provide a new perspective for occupational science research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA