Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 406
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 300(6): 107337, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705397

RESUMEN

APE2 plays important roles in the maintenance of genomic and epigenomic stability including DNA repair and DNA damage response. Accumulating evidence has suggested that APE2 is upregulated in multiple cancers at the protein and mRNA levels and that APE2 upregulation is correlative with higher and lower overall survival of cancer patients depending on tumor type. However, it remains unknown how APE2 protein abundance is maintained and regulated in cells. Here, we provide the first evidence of APE2 regulation via the posttranslational modification ubiquitin. APE2 is poly-ubiquitinated via K48-linked chains and degraded via the ubiquitin-proteasome system where K371 is the key residue within APE2 responsible for its ubiquitination and degradation. We further characterize MKRN3 as the E3 ubiquitin ligase for APE2 ubiquitination in cells and in vitro. In summary, this study offers the first definition of the APE2 proteostasis network and lays the foundation for future studies pertaining to the posttranslational modification regulation and functions of APE2 in genome integrity and cancer etiology/treatment.


Asunto(s)
ADN-(Sitio Apurínico o Apirimidínico) Liasa , Ubiquitinación , Humanos , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Ubiquitina/metabolismo , Procesamiento Proteico-Postraduccional , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Células HEK293 , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Proteolisis , Endonucleasas , Enzimas Multifuncionales
2.
PLoS Biol ; 20(5): e3001643, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35639676

RESUMEN

Ensuring high vaccination and even booster vaccination coverage is critical in preventing severe Coronavirus Disease 2019 (COVID-19). Among the various COVID-19 vaccines currently in use, the mRNA vaccines have shown remarkable effectiveness. However, systemic adverse events (AEs), such as postvaccination fatigue, are prevalent following mRNA vaccination, and the underpinnings of which are not understood. Herein, we found that higher baseline expression of genes related to T and NK cell exhaustion and suppression were positively correlated with the development of moderately severe fatigue after Pfizer-BioNTech BNT162b2 vaccination; increased expression of genes associated with T and NK cell exhaustion and suppression reacted to vaccination were associated with greater levels of innate immune activation at 1 day postvaccination. We further found, in a mouse model, that altering the route of vaccination from intramuscular (i.m.) to subcutaneous (s.c.) could lessen the pro-inflammatory response and correspondingly the extent of systemic AEs; the humoral immune response to BNT162b2 vaccination was not compromised. Instead, it is possible that the s.c. route could improve cytotoxic CD8 T-cell responses to BNT162b2 vaccination. Our findings thus provide a glimpse of the molecular basis of postvaccination fatigue from mRNA vaccination and suggest a readily translatable solution to minimize systemic AEs.


Asunto(s)
COVID-19 , Animales , Vacuna BNT162 , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Fatiga/etiología , Humanos , Células Asesinas Naturales , Ratones , ARN Mensajero/genética , Vacunación/efectos adversos
3.
Nano Lett ; 24(28): 8495-8501, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38950351

RESUMEN

Layered lithiated oxides are promising materials for next generation Li-ion battery cathode materials; however, instability during cycling results in poor performance over time compared to the high capacities theoretically possible with these materials. Here we report the characterizations of a Li1.47Mn0.57Al0.13Fe0.095Co0.105Ni0.095O2.49 high-entropy layered oxide (HELO) with the Li2MO3 structure where M = Mn, Al, Fe, Co, and Ni. Using electron microscopy and X-ray spectroscopy, we identify a homogeneous Li2MO3 structure stabilized by the entropic contribution of oxygen vacancies. This defect-driven entropy would not be attainable in the LiMO2 structure sometimes observed in similar materials as a secondary phase owing to the presence of fewer O sites and a 3+ oxidation state for the metal site; instead, a Li2-γMO3-δ is produced. Beyond Li2MO3, this defect-driven entropy approach to stabilizing novel compositions and phases can be applied to a wide array of future cathode materials including spinel and rock salt structures.

4.
Genet Epidemiol ; 47(2): 121-134, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36490288

RESUMEN

The large-scale open access whole-exome sequencing (WES) data of the UK Biobank ~200,000 participants is accelerating a new wave of genetic association studies aiming to identify rare and functional loss-of-function (LoF) variants associated with complex traits and diseases. We proposed to merge the WES genotypes and the genome-wide genotyping (GWAS) genotypes of 167,000 UKB homogeneous European participants into a combined reference panel, and then to impute 241,911 UKB homogeneous European participants who had the GWAS genotypes only. We then used the imputed data to replicate association identified in the discovery WES sample. The average imputation accuracy measure r2 is modest to high for LoF variants at all minor allele frequency intervals: 0.942 at MAF interval (0.01, 0.5), 0.807 at (1.0 × 10-3 , 0.01), 0.805 at (1.0 × 10-4 , 1.0 × 10-3 ), 0.664 at (1.0 × 10-5 , 1.0 × 10-4 ) and 0.410 at (0, 1.0 × 10-5 ). As applications, we studied associations of LoF variants with estimated heel BMD and four lipid traits. In addition to replicating dozens of previously reported genes, we also identified three novel associations, two genes PLIN1 and ANGPTL3 for high-density-lipoprotein cholesterol and one gene PDE3B for triglycerides. Our results highlighted the strength of WES based genotype imputation as well as provided useful imputed data within the UKB cohort.


Asunto(s)
Bancos de Muestras Biológicas , Exoma , Humanos , Secuenciación del Exoma , Genotipo , Frecuencia de los Genes , Reino Unido , Estudio de Asociación del Genoma Completo/métodos , Polimorfismo de Nucleótido Simple , Proteína 3 Similar a la Angiopoyetina
5.
Small ; : e2401996, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829026

RESUMEN

Visible-blind ultraviolet (UV) light detection has a wide application range in scenes like space environment monitoring and medical imaging. To realize miniaturized UV detectors with high performance and high integration ability, new device structures without bulky light filters need to be developed based on advanced mechanisms. Here the unipolar barrier van der Waals heterostructure (UB-vdWH) photodetector is reported that realizes filter-free visible-blind UV detection with good stability, robustness, selectivity, and high detection performance. The UB-vdWH shows a responsivity of 2452 A W-1, a photo on-off ratio of 2.94 × 105 and a detectivity of 1.26 × 1015 Jones as a UV detector, owing to the intentionally designed barrier height that suppresses dark current and photoresponse to visible light during the transport process. The good performance remains intact during 104 test cycles or even under high temperatures, which proves the stability, and robustness of the UB-vdWH, thus shows the huge potential for a wider application range.

6.
J Hum Genet ; 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39147824

RESUMEN

Age at menarche (AAM) is a sign of puberty of females. It is a heritable trait associated with various adult diseases. However, the genetic mechanism that determines AAM and links it to disease risk is poorly understood. Aiming to uncover the genetic basis for AAM, we conducted a joint association study in up to 438,089 women from 3 genome-wide association studies of European and East Asian ancestries. A series of bioinformatical analyses and causal inference were then followed to explore in-depth annotations at the associated loci and infer the causal relationship between AAM and other complex traits/diseases. This largest meta-analysis identified a total of 21 novel AAM associated loci at the genome wide significance level (P < 5.0 × 10-8), 4 of which were European ancestry-specific loci. Functional annotations prioritized 33 candidate genes at newly identified loci. Significant genetic correlations were observed between AAM and 67 complex traits. Further causal inference demonstrated the effects of AAM on 13 traits, including forced vital capacity (FVC), high blood pressure, age at first live birth, etc, indicating that earlier AAM causes lower FVC, worse lung function, hypertension and earlier age at first (last) live birth. Enrichment analysis identified 5 enriched tissues, including the hypothalamus middle, hypothalamo hypophyseal system, neurosecretory systems, hypothalamus and retina. Our findings may provide useful insights that elucidate the mechanisms determining AAM and the genetic interplay between AAM and some traits of women.

7.
Anticancer Drugs ; 35(2): 129-139, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37615540

RESUMEN

Colorectal cancer (CRC) is one of the world's most common and deadly cancers. According to GLOBOCAN2020's global incidence rate and mortality estimates, CRC is the third main cause of cancer and the second leading cause of cancer-related deaths worldwide. The US Food and Drug Administration has approved auranofin for the treatment of rheumatoid arthritis. It is a gold-containing chemical that inhibits thioredoxin reductase. Auranofin has a number of biological activities, including anticancer activity, although it has not been researched extensively in CRC, and the mechanism of action on CRC cells is still unknown. The goal of this research was to see how Auranofin affected CRC cells in vivo and in vitro . The two chemical libraries were tested for drugs that make CRC cells more responsive. The CCK-8 technique was used to determine the cell survival rate. The invasion, migration, and proliferation of cells were assessed using a transwell test and a colony cloning experiment. An electron microscope was used to observe autophagosome formation. Western blotting was also used to determine the degree of expression of related proteins in cells. Auranofin's tumor-suppressing properties were further tested in a xenograft tumor model of human SW620 CRC cells. Auranofin dramatically reduced the occurrence of CRC by decreasing the proliferation, migration, and invasion of CRC cells, according to our findings. Through a mTOR-dependent mechanism, auranofin inhibits the epithelial-mesenchymal transition (EMT) and induces autophagy in CRC cells. Finally, in-vivo tests revealed that auranofin suppressed tumor growth in xenograft mice while causing no harm. In summary, auranofin suppresses CRC cell growth, invasion, and migration. Auranofin inhibits the occurrence and progression of CRC by decreasing EMT and inducing autophagy in CRC cells via a mTOR-dependent mechanism. These findings suggest that auranofin could be a potential chemotherapeutic medication for the treatment of human CRC.


Asunto(s)
Auranofina , Neoplasias Colorrectales , Humanos , Animales , Ratones , Auranofina/farmacología , Auranofina/uso terapéutico , Línea Celular Tumoral , Serina-Treonina Quinasas TOR/metabolismo , Neoplasias Colorrectales/patología , Autofagia , Transición Epitelial-Mesenquimal , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica
8.
Nature ; 556(7700): 255-258, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29618817

RESUMEN

Cross-species transmission of viruses from wildlife animal reservoirs poses a marked threat to human and animal health 1 . Bats have been recognized as one of the most important reservoirs for emerging viruses and the transmission of a coronavirus that originated in bats to humans via intermediate hosts was responsible for the high-impact emerging zoonosis, severe acute respiratory syndrome (SARS) 2-10 . Here we provide virological, epidemiological, evolutionary and experimental evidence that a novel HKU2-related bat coronavirus, swine acute diarrhoea syndrome coronavirus (SADS-CoV), is the aetiological agent that was responsible for a large-scale outbreak of fatal disease in pigs in China that has caused the death of 24,693 piglets across four farms. Notably, the outbreak began in Guangdong province in the vicinity of the origin of the SARS pandemic. Furthermore, we identified SADS-related CoVs with 96-98% sequence identity in 9.8% (58 out of 591) of anal swabs collected from bats in Guangdong province during 2013-2016, predominantly in horseshoe bats (Rhinolophus spp.) that are known reservoirs of SARS-related CoVs. We found that there were striking similarities between the SADS and SARS outbreaks in geographical, temporal, ecological and aetiological settings. This study highlights the importance of identifying coronavirus diversity and distribution in bats to mitigate future outbreaks that could threaten livestock, public health and economic growth.


Asunto(s)
Alphacoronavirus/aislamiento & purificación , Alphacoronavirus/patogenicidad , Enfermedades de los Animales/epidemiología , Enfermedades de los Animales/virología , Quirópteros/virología , Infecciones por Coronavirus/veterinaria , Diarrea/veterinaria , Porcinos/virología , Alphacoronavirus/clasificación , Alphacoronavirus/genética , Enfermedades de los Animales/transmisión , Animales , Biodiversidad , China/epidemiología , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/transmisión , Diarrea/patología , Diarrea/virología , Reservorios de Enfermedades/veterinaria , Reservorios de Enfermedades/virología , Genoma Viral/genética , Humanos , Yeyuno/patología , Yeyuno/virología , Filogenia , Síndrome Respiratorio Agudo Grave/epidemiología , Síndrome Respiratorio Agudo Grave/veterinaria , Síndrome Respiratorio Agudo Grave/virología , Análisis Espacio-Temporal , Zoonosis/epidemiología , Zoonosis/transmisión , Zoonosis/virología
9.
Environ Res ; 242: 117775, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38029815

RESUMEN

The development of cost-efficient biochar adsorbent with a simple preparation method is essential to constructing efficient wastewater treatment system. Here, a low-cost waste carton biochar (WCB) prepared by a simple two-step carbonization was applied in efficiently removing Rhodamine B (RhB) in aqueous environment. The maximum ability of WCB for RhB adsorption was 222 mg/g, 6 and 10 times higher than both of rice straw biochar (RSB) and broadbean shell biochar (BSB), respectively. It was mainly ascribed to the mesopore structure (3.0-20.4 nm) of WCB possessing more spatial sites compared to RSB (2.2 nm) and BSB (2.4 nm) for RhB (1.4 nm✕1.1 nm✕0.6 nm) adsorption. Furthermore, external mass transfer (EMT) controlled mass transfer resistance (MTR) of the RhB sorption process by WCB which was fitted with the Langmuir model well. Meanwhile, the adsorption process was dominated by physisorption through van der Waals forces and π-π interactions. A mixture of three dyes in river water was well removed by using WCB. This work provides a straightforward method of preparing mesoporous biochar derived from waste carton with high-adsorption capacity for dye wastewater treatment.


Asunto(s)
Carbón Orgánico , Aguas Residuales , Contaminantes Químicos del Agua , Colorantes/química , Eliminación de Residuos Líquidos/métodos , Adsorción , Contaminantes Químicos del Agua/análisis , Cinética
10.
Nucleic Acids Res ; 50(18): 10503-10525, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36200829

RESUMEN

Multifunctional protein APE1/APEX1/HAP1/Ref-1 (designated as APE1) plays important roles in nuclease-mediated DNA repair and redox regulation in transcription. However, it is unclear how APE1 regulates the DNA damage response (DDR) pathways. Here we show that siRNA-mediated APE1-knockdown or APE1 inhibitor treatment attenuates the ATR-Chk1 DDR under stress conditions in multiple immortalized cell lines. Congruently, APE1 overexpression (APE1-OE) activates the ATR DDR under unperturbed conditions, which is independent of APE1 nuclease and redox functions. Structural and functional analysis reveals a direct requirement of the extreme N-terminal motif within APE1 in the assembly of distinct biomolecular condensates in vitro and DNA/RNA-independent activation of the ATR DDR. Overexpressed APE1 co-localizes with nucleolar NPM1 and assembles biomolecular condensates in nucleoli in cancer but not non-malignant cells, which recruits ATR and activator molecules TopBP1 and ETAA1. APE1 protein can directly activate ATR to phosphorylate its substrate Chk1 in in vitro kinase assays. W119R mutant of APE1 is deficient in nucleolar condensation, and is incapable of activating nucleolar ATR DDR in cells and ATR kinase in vitro. APE1-OE-induced nucleolar ATR DDR activation leads to compromised ribosomal RNA transcription and reduced cell viability. Taken together, we propose distinct mechanisms by which APE1 regulates ATR DDR pathways.


Asunto(s)
Proteínas de Unión al ADN , Proteínas Nucleares , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Condensados Biomoleculares , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , ADN , Daño del ADN , Proteínas de Unión al ADN/genética , Proteínas Nucleares/metabolismo , ARN Ribosómico/genética , ARN Interferente Pequeño/genética
11.
Pestic Biochem Physiol ; 202: 105910, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38879293

RESUMEN

The extraordinary adaptability and dispersal abilities have allowed Hyphantria cunea to expand its range, posing a great threat to urban landscapes and natural ecosystems. Searching for safe, efficient, and low-cost control methods may provide new strategies for pest management in H. cunea spread areas. In this study, based on the attraction of insects by preferred hosts, it was found that the response rates of virgin H. cunea female adults to Salix matsudana, Juglans mandshurica and Ulmus pumila were 89.17%, 97.92% and 93.98%, respectively. It was further found that this significant preference was mainly related to the volatiles m-xylene, o-xylene, dodecane and tetradecane found in the three species. Even though all four compounds at 10 µL/mL and 100 µL/mL had significant attractive effects on the virgin H. cunea female adults, m-xylene and dodecane at 100 µL/mL elicited significant EAG responses and tending behaviors by stimulating the olfactory receptor neurons (ORN A) of females, with response rates of 83.13% and 84.17%, while also having significant attractive effects on virgin male adults with rates of 65.74% and 67.51%. Therefore, both m-xylene and dodecane which at concentrations of 100 µL/mL had strong attractions to adults, could be used as the first choice of attractants for both sexes of H. cunea. This has important practical significance in reducing the frequency of H. cunea generations, limiting their population, controlling their spread range, and improving the efficiency of pest management in epidemic areas.


Asunto(s)
Compuestos Orgánicos Volátiles , Animales , Femenino , Masculino , Compuestos Orgánicos Volátiles/farmacología , Juglans
12.
Eur J Neurosci ; 58(1): 2384-2405, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37161514

RESUMEN

Hypoxic-ischemic encephalopathy (HIE) is a leading cause of long-term neurological disability in neonates and adults. Despite emerging advances in supportive care, like the most effective approach, hypothermia, poor prognosis has still been present in current clinical treatment for HIE. Stem cell therapy has been adopted for treating cerebral ischemia in preclinical and clinical trials, displaying its promising therapeutic value. At present, reported treatments for stroke employed stem cells to replace the lost neurons and integrate them into the existing host circuitry, promoting the release of growth factors to support and stimulate endogenous repair processes and so on. In this review, a meaningful overview to numerous studies published up to now was presented by introducing the preclinical and clinical research status of stem cell therapy for cerebral ischemia and hypoxia, discussing potential therapeutic mechanisms of stem cell transplantation for curing HI-induced brain injury, summarizing a series of approaches for marking transplanted cells and existing imaging systems for stem cell labelling and in vivo tracking and expounding the endogenous regeneration capability of stem cells in the newborn brain when subjected to an HI insult. Additionally, it is promising to combine stem therapy with neuromodulation through specific regulation of neural circuits. The crucial neural circuits across different brain areas related to functional recovery are of great significance for the application of neuromodulation strategies after the occurrence of neonatal hypoxic-ischemic encephalopathy (NHIE).


Asunto(s)
Hipotermia Inducida , Hipoxia-Isquemia Encefálica , Recién Nacido , Humanos , Hipoxia-Isquemia Encefálica/terapia , Trasplante de Células Madre , Hipoxia , Neuronas , Hipotermia Inducida/métodos
13.
Anal Chem ; 95(32): 12071-12079, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37523447

RESUMEN

Protein-oligonucleotide conjugates are increasingly used as detection probes in biological applications such as proximity sensing and spatial biology. The preparation of high-quality conjugate probes as starting reagents is critical for achieving good and consistent performance, which we demonstrate via the DNA proximity assay (DPA) for the one-pot quantification of protein targets. We first established a complete conjugation and anion-exchange chromatography purification workflow to reproducibly obtain pure subpopulations of protein probes carrying a discrete number of oligonucleotide strands. A systematic study using the purified conjugate sub-populations confirmed that the order of conjugate (number of oligonucleotides per protein) and its purity (the absence of the unconjugated antibody) were important for ensuring optimal and reproducible assay performance. The streamlined workflow was then successfully used to conjugate a pair of universal DPA initiator oligonucleotides onto a wide range of binders including antibodies, nanobodies, and antigens which enabled the versatile detection of different types of proteins such as cytokines, total antibodies, and specific antibody isotypes. The good assay robustness (the inter-assay coefficient of variation lower than 5%) and linear calibration curve was achieved across all targets with just a single mix-and-incubate reaction step and a short reaction time of 30 min. We anticipate the streamlined protein-oligonucleotide probe preparation workflow developed in this work to have broad utility across applications leveraging the specificity of protein bio-recognition with the programmability of DNA hybridization.


Asunto(s)
ADN , Oligonucleótidos , Oligonucleótidos/química , Proteínas/análisis , Anticuerpos/química , Hibridación de Ácido Nucleico
14.
J Med Virol ; 95(1): e28228, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36251622

RESUMEN

Pseudorabies virus (PRV), as a neuroherpes virus, leads to heavy economic losses in the pig industry worldwide. This study was designed to establish recombinant PRV glycoprotein B (gB), C, and D proteins as PRV diagnostic antigens. The gB/C, gC/D, and gB/C/D fusion sequences were synthesized and inserted into pET-28a+ vector to generate the recombinant plasmids. The identified positive recombinant plasmids were transformed into BL21 Escherichia coli. The results of the polymerase chain reaction and enzyme digestion showed that the gB/C, gC/D, and gB/C/D fusion proteins were successfully expressed. An indirect sandwich ELISA was developed with the gB/C, gC/D, and gB/C/D as coating antigens. The results of indirect enzyme-linked immunosorbent assay (ELISA) analysis of 184 PRV-positive porcine sera showed that the positive coincidence rates of three recombinant proteins ELISAs relative to IDEXX kit were 98.25%, 95.32%, and 98.83%, and the negative coincidence rates were 85.71%, 75% and 100%, respectively. The inter and intra batch repeatability tests showed that the coefficient of variations of our kits were all less than 5%. Especially, the gB/C/D-ELISA has the highest specificity and sensitivity among the ELISA methods developed in this study. We established a series expression system of gB/C, gC/D, and gB/C/D antigen epitope genes and Recombinant protein-based indirect ELISA, providing new ideas for PV diagnosis and vaccine development.


Asunto(s)
Herpesvirus Suido 1 , Seudorrabia , Animales , Porcinos , Seudorrabia/diagnóstico , Seudorrabia/prevención & control , Proteínas Recombinantes , Proteínas del Envoltorio Viral , Ensayo de Inmunoadsorción Enzimática/métodos , Herpesvirus Suido 1/genética , Epítopos/metabolismo , Anticuerpos Antivirales
15.
Toxicol Appl Pharmacol ; 481: 116732, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37871735

RESUMEN

Metformin is commonly used, but approximately 20% of patients experience gastrointestinal intolerance, leading to medication discontinuation for unclear reasons and a lack of effective management strategies. In this study, the 18 fecal and blood samples were analyzed using 16S rRNA and mRNA transcriptome, respectively. These samples included 3 fecal and 4 blood from metformin-tolerant T2D patients before and after metformin treatment (T and Ta), 3 fecal and 5 blood from metformin-intolerant T2D patients before and after treatment (TS and TSa), and 6 fecal samples from healthy controls. The results showed that certain anti-inflammatory gut bacteria and gene, such as Barnesiella (p = 0.046), Parabacteroides goldsteinii (p = 0.016), and the gene JUND (p = 0.0002), exhibited higher levels in metformin-intolerant patients, and which decreased after metformin treatment (p < 0.05). This potentially invalidates patients' anti-inflammatory effect and intestinal mucus barrier protection, which may lead to alterations in intestinal permeability, decreased gut barrier function, and gastrointestinal symptoms, including diarrhea, bloating, and nausea. After metformin treatment, primary bile acids (PBAs) production species: Weissella confusa, Weissella paramesenteroides, Lactobacillus brevis, and Lactobacillus plantarum increased (p < 0.05). The species converting PBAs to secondary bile acids (SBAs): Parabacteroides distasonis decreased (p < 0.05). This might result in accumulation of PBAs, which also may lead to anti-inflammatory gene JUND and SQSTM1 downregulated. In conclusion, this study suggests that metformin intolerance may be attributed to a decrease in anti-inflammatory-related flora and genes, and also alterations in PBAs accumulation-related flora. These findings open up possibilities for future research targeting gut flora and host genes to prevent metformin intolerance.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Metformina , Humanos , Metformina/uso terapéutico , Microbioma Gastrointestinal/genética , Diabetes Mellitus Tipo 2/complicaciones , ARN Ribosómico 16S , Ácidos y Sales Biliares , Antiinflamatorios/uso terapéutico
16.
Calcif Tissue Int ; 112(3): 350-358, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36576504

RESUMEN

The two-sample Mendelian randomization (MR) study revealed a causal association of plasma proteins with osteoporosis (OP) and osteoarthritis (OA). Bone mineral density (BMD) is the gold standard for the clinical assessment of OP. Recent studies have shown that plasma proteins play an essential role in the regulation of bone development. However, the causal association of plasma proteins with BMD and OA remains unclear. We estimated the effects of 2889 plasma proteins on 2 BMD phenotypes and 6 OA phenotypes using two-sample MR analysis based on the genome-wide association study summary statistics. Then, we performed sensitivity analysis and reverse-direction MR analysis to evaluate the robustness of the MR analysis results, followed by gene ontology (GO) enrichment analysis and KEGG pathway analysis to explore the functional relevance of the identified plasma proteins. Overall, we observed a total of 257 protein-estimated heel BMD associations, 17 protein-total-body BMD associations, 2 protein-all-OA associations, and 2 protein-knee-OA associations at PFDR < 0.05. Reverse-direction MR analysis demonstrated that there was little evidence of the causal association of BMD and OA with plasma proteins. GO enrichment analysis and KEGG pathway analysis identified multiple pathways, which may be involved in the development of OP and OA. Our findings recognized plasma proteins that could be used to regulate changes in OP and OA, thus, providing new insights into protein-mediated mechanisms of bone development.


Asunto(s)
Osteoartritis de la Rodilla , Osteoporosis , Humanos , Proteoma/genética , Estudio de Asociación del Genoma Completo , Osteoporosis/metabolismo , Densidad Ósea/genética , Polimorfismo de Nucleótido Simple
17.
Cell Mol Neurobiol ; 43(8): 4333-4344, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37878141

RESUMEN

Carpal tunnel syndrome (CTS) is one of the most common work-related musculoskeletal disorders. The present study sought to identify putative causal proteins for CTS. We conducted a two-sample Mendelian randomization (MR) analysis to evaluate the causal association between 2859 plasma proteins (N = 35,559) and CTS (N = 1,239,680) based on the published GWAS summary statistics. Then we replicated the significant associations using an independent plasma proteome GWAS (N = 10,708). Sensitivity analyses were conducted to validate the robustness of MR results. Multivariate MR and mediation analyses were conducted to evaluate the mediation effects of body mass index (BMI), type 2 diabetes (T2D), and arm tissue composition on the association between putative causal proteins and CTS. Colocalization analysis was used to examine whether the identified proteins and CTS shared causal variant(s). Finally, we evaluated druggability of the identified proteins. Ten plasma proteins were identified as putative causal markers for CTS, including sCD14, PVR, LTOR3, CTSS, SIGIRR, IFNL3, ASPN, TM11D, ASIP, and ITIH1. Sensitivity analyses and reverse MR analysis validated the robustness of their causal effects. Arm tissue composition, BMI, and T2D may play a fully/partial mediating role in the causal relationships of ASIP, TM11D, IFNL3, PVR, and LTOR3 with CTS. The association of ASPN and sCD14 with CTS were supported by colocalization analysis. Druggability assessment demonstrated that sCD14, CTSS, TM11D, and IFNL3 were potential drug therapeutic targets. The present study identified several potential plasma proteins that were causally associated with CTS risk, providing new insights into the pathogenesis of protein-mediated CTS and offering potential targets for new therapies.


Asunto(s)
Síndrome del Túnel Carpiano , Diabetes Mellitus Tipo 2 , Humanos , Proteínas Sanguíneas/genética , Síndrome del Túnel Carpiano/tratamiento farmacológico , Síndrome del Túnel Carpiano/genética , Síndrome del Túnel Carpiano/diagnóstico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/complicaciones , Receptores de Lipopolisacáridos , Análisis de la Aleatorización Mendeliana
18.
Mol Pharm ; 20(9): 4611-4628, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37587099

RESUMEN

Lyotropic liquid crystalline nanoassemblies (LLCNs) are internally self-assembled (ISA)-somes formed by amphiphilic molecules in a mixture comprising a lipid, stabilizer, and/or surfactant and aqueous media/dispersant. LLCNs are unique nanoassemblies with versatile applications in a wide range of biomedical functions. However, they comprise a nanosystem that is yet to be fully explored for targeted systemic treatment of breast cancer. In this study, LLCNs proposed for gemcitabine and thymoquinone (Gem-TQ) co-delivery were prepared from soy phosphatidylcholine (SPC), phytantriol (PHYT), or glycerol monostearate (MYVR) in optimized ratios containing a component of citric and fatty acid ester-based emulsifier (Grinsted citrem) or a triblock copolymer, Pluronic F127 (F127). Hydrodynamic particle sizes determined were below 400 nm (ranged between 96 and 365 nm), and the series of nanoformulations displayed negative surface charge. Nonlamellar phases identified by small-angle X-ray scattering (SAXS) profiles comprise the hexagonal, cubic, and micellar phases. In addition, high entrapment efficiency that accounted for 98.3 ± 0.1% of Gem and 99.5 ± 0.1% of TQ encapsulated was demonstrated by the coloaded nanocarrier system, SPC/citrem/Gem-TQ hexosomes. Low cytotoxicity of SPC-citrem hexosomes was demonstrated in MCF10A cells consistent with hemo- and biocompatibility observed in zebrafish (Danio rerio) embryos for up to 96 h postfertilization (hpf). SPC/citrem/Gem-TQ hexosomes demonstrated IC50 of 24.7 ± 4.2 µM in MCF7 breast cancer cells following a 24 h treatment period with the moderately synergistic interaction between Gem and TQ retained (CI = 0.84). Taken together, biocompatible SPC/citrem/Gem-TQ hexosomes can be further developed as a multifunctional therapeutic nanodelivery approach, plausible for targeting breast cancer cells by incorporation of targeting ligands.


Asunto(s)
Gemcitabina , Neoplasias , Animales , Dispersión del Ángulo Pequeño , Pez Cebra , Difracción de Rayos X , Lecitinas
19.
Nucleic Acids Res ; 49(8): 4258-4265, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33849054

RESUMEN

Associative toehold is a powerful concept enabling efficient combinatorial computation in DNA circuit. A longer association length boosts circuit kinetics and equilibrium signal but results in higher leak rate. We reconcile this trade-off by using a hairpin lock design to dynamically elongate the effective associative toehold length in response to the input target. Design guidelines were established to achieve robust elongation without incurring additional leakages. Three hairpin initiators with different combinations of elongated associative toehold (4 → 6 nt, 5 → 8 nt and 6 → 9 nt) were shortlisted from the design framework for further discussion. The circuit performance improved in terms of reaction kinetics, equilibrium signal generated and limit of detection. Overall, the elongated associative toehold served as a built-in function to stabilize and favour the forward, desired reaction when triggered.


Asunto(s)
Emparejamiento Base , ADN/química , Cinética , Termodinámica
20.
Nano Lett ; 22(16): 6700-6708, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-35921591

RESUMEN

The increasing demands of electronic devices and electric transportation necessitate lithium-ion batteries with simultaneous high energy and power capabilities. However, rate capabilities are often limited in high-loading electrodes due to the lengthy and tortuous ion transport paths with their electrochemical behaviors governed by complicated electrode architectures still elusive. Here, we report the electrode-level tortuosity engineering design enabling improved charge storage kinetics in high-energy electrodes. Both high areal capacity and high-rate capability can be achieved beyond the practical level of mass loadings in electrodes with vertically oriented architectures. The electrochemical properties in electrodes with various architectures were quantitatively investigated through correlating the characteristic time with tortuosity. The lithium-ion transport kinetics regulated by electrode architectures was further studied via combining the three-dimensional electrode architecture visualization and simulation. The tortuosity-controlled charge storage kinetics revealed in this study can be extended to general electrode systems and provide useful design consideration for next-generation high-energy/power batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA