RESUMEN
The increasing demand for next-generation energy storage systems necessitates the development of high-performance lithium batteries1-3. Unfortunately, current Li anodes exhibit rapid capacity decay and a short cycle life4-6, owing to the continuous generation of solid electrolyte interface7,8 and isolated Li (i-Li)9-11. The formation of i-Li during the nonuniform dissolution of Li dendrites12 leads to a substantial capacity loss in lithium batteries under most testing conditions13. Because i-Li loses electrical connection with the current collector, it has been considered electrochemically inactive or 'dead' in batteries14,15. Contradicting this commonly accepted presumption, here we show that i-Li is highly responsive to battery operations, owing to its dynamic polarization to the electric field in the electrolyte. Simultaneous Li deposition and dissolution occurs on two ends of the i-Li, leading to its spatial progression toward the cathode (anode) during charge (discharge). Revealed by our simulation results, the progression rate of i-Li is mainly affected by its length, orientation and the applied current density. Moreover, we successfully demonstrate the recovery of i-Li in Cu-Li cells with >100% Coulombic efficiency and realize LiNi0.5Mn0.3Co0.2O2 (NMC)-Li full cells with extended cycle life.
RESUMEN
Sodium (Na) is predicted to be an ideal plasmonic material with ultralow optical loss across visible to near-infrared (NIR). However, there has been limited research on Na plasmonics. Here we develop a scalable fabrication method for Na nanostructures by combining phase-shift photolithography and a thermo-assisted spin-coating process. Using this method, we fabricated Na nanopit arrays with varying periodicities (300-600 nm) and with tunable surface plasmon polariton (SPP) modes spanning visible to NIR. We achieved SPP resonances as narrow as 9.3 nm. In addition, Na nanostructures showed line width narrowing from visible toward NIR, showing their prospect operating in the NIR. To address the challenges associated with the high reactivity of Na, we designed a simple encapsulation strategy and stabilized the Na nanostructures in ambient conditions for more than two months. As a low-cost and low-loss plasmonic material, Na offers a competitive option for nanophotonic devices and plasmon-enhanced applications.
RESUMEN
Alkali metals have low optical losses in the visible to near-infrared (NIR) compared with noble metals. However, their high reactivity prohibits the exploration of their optical properties. Recently sodium (Na) has been experimentally demonstrated as a low-loss plasmonic material. Here we report on a thermo-assisted nanoscale embossing (TANE) technique for fabricating plasmonic nanostructures from pure potassium (K) and NaK liquid alloys. We show high-quality-factor resonances from K as narrow as 15 nm in the NIR, which we attribute to the high material quality and low optical loss. We further demonstrate liquid Na-K plasmonics by exploiting the Na-K eutectic phase diagram. Our study expands the material library for alkali metal plasmonics and liquid plasmonics, potentially enabling a range of new material platforms for active metamaterials and photonic devices.
RESUMEN
Supercooled liquid sulfur microdroplets were directly generated from polysulfide electrochemical oxidation on various metal-containing electrodes. The sulfur droplets remain liquid at 155 °C below sulfur's melting point (Tm = 115 °C), with fractional supercooling change (Tm - Tsc)/Tm larger than 0.40. In operando light microscopy captured the rapid merging and shape relaxation of sulfur droplets, indicating their liquid nature. Micropatterned electrode and electrochemical current allow precise control of the location and size of supercooled microdroplets, respectively. Using this platform, we initiated and observed the rapid solidification of supercooled sulfur microdroplets upon crystalline sulfur touching, which confirms supercooled sulfur's metastability at room temperature. In addition, the formation of liquid sulfur in electrochemical cell enriches lithium-sulfur-electrolyte phase diagram and potentially may create new opportunities for high-energy Li-S batteries.
RESUMEN
A variety of methods including tuning chemical compositions, structures, crystallinity, defects and strain, and electrochemical intercalation have been demonstrated to enhance the catalytic activity. However, none of these tuning methods provide direct dynamical control during catalytic reactions. Here we propose a new method to tune the activity of catalysts through solid-state ion gating manipulation and adjustment (SIGMA) using a catalysis transistor. SIGMA can electrostatically dope the surface of catalysts with a high electron concentration over 5 × 1013 cm-2 and thus modulate both the chemical potential of the reaction intermediates and their electrical conductivity. The hydrogen evolution reaction (HER) on both pristine and defective MoS2 were investigated as model reactions. Our theoretical and experimental results show that the overpotential at 10 mA/cm2 and Tafel slope can be in situ, continuously, dynamically, and reversibly tuned over 100 mV and around 100 mV/dec, respectively.
RESUMEN
Lithium (Li) metal has long been considered the "holy grail" of battery anode chemistry but is plagued by low efficiency and poor safety due to its high chemical reactivity and large volume fluctuation, respectively. Here we introduce a new host of wrinkled graphene cage (WGC) for Li metal. Different from recently reported amorphous carbon spheres, WGC show highly improved mechanical stability, better Li ion conductivity, and excellent solid electrolyte interphase (SEI) for continuous robust Li metal protection. At low areal capacities, Li metal is preferentially deposited inside the graphene cage. Cryogenic electron microscopy characterization shows that a uniform and stable SEI forms on the WGC surface that can shield the Li metal from direct exposure to electrolyte. With increased areal capacities, Li metal is plated densely and homogeneously into the outer pore spaces between graphene cages with no dendrite growth or volume change. As a result, a high Coulombic efficiency (CE) of â¼98.0% was achieved under 0.5 mA/cm2 and 1-10 mAh/cm2 in commercial carbonate electrolytes, and a CE of 99.1% was realized with high-concentration electrolytes under 0.5 mA/cm2 and 3 mAh/cm2. Full cells using WGC electrodes with prestored Li paired with Li iron phosphate showed greatly improved cycle lifetime. With 10 mAh/cm2 Li metal deposition, the WGC/Li composite anode was able to provide a high specific capacity of â¼2785 mAh/g. With its roll-to-roll compatible fabrication procedure, WGC serves as a highly promising material for the practical realization of Li metal anodes in next-generation high energy density secondary batteries.
RESUMEN
The Mg/S battery is attractive because of its high theoretical energy density and the abundance of Mg and S on the earth. However, its development is hindered by the lack of understanding to the underlying electrochemical reaction mechanism of its charge-discharge processes. Here, using a unique in situ X-ray absorption spectroscopic tool, we systematically study the reaction pathways of the Mg/S cells in Mg(HMDS)2-AlCl3 electrolyte. We find that the capacity degradation is mainly due to the formation of irreversible discharge products, such as MgS and Mg3S8, through a direct electrochemical deposition or a chemical disproportionation of intermediate polysulfide. In light of the fundamental understanding, we propose to use TiS2 as a catalyst to activate the irreversible reaction of low-order MgS x and MgS, which results in an increased discharging capacity up to 900 mAh·g-1 and a longer cycling life.
RESUMEN
Plasmonic nanostructures with enhanced localized optical fields as well as narrow linewidths have driven advances in numerous applications. However, the active engineering of ultranarrow resonances across the visible regime-and within a single system-has not yet been demonstrated. This paper describes how aluminum nanoparticle arrays embedded in an elastomeric slab may exhibit high-quality resonances with linewidths as narrow as 3 nm at wavelengths not accessible by conventional plasmonic materials. We exploited stretching to improve and tune simultaneously the optical response of as-fabricated nanoparticle arrays by shifting the diffraction mode relative to single-particle dipolar or quadrupolar resonances. This dynamic modulation of particle-particle spacing enabled either dipolar or quadrupolar lattice modes to be selectively accessed and individually optimized. Programmable plasmon modes offer a robust way to achieve real-time tunable materials for plasmon-enhanced molecular sensing and plasmonic nanolasers and opens new possibilities for integrating with flexible electronics.
RESUMEN
Excited-state interactions between nanoscale cavities and photoactive molecules are critical in plasmonic nanolasing, although the underlying details are less-resolved. This paper reports direct visualization of the energy-transfer dynamics between two-dimensional arrays of plasmonic gold bowtie nanocavities and dye molecules. Transient absorption microscopy measurements of single bowties within the array surrounded by gain molecules showed fast excited-state quenching (2.6 ± 1 ps) characteristic of individual nanocavities. Upon optical pumping at powers above threshold, lasing action emerged depending on the spacing of the array. By correlating ultrafast microscopy and far-field light emission characteristics, we found that bowtie nanoparticles acted as isolated cavities when the diffractive modes of the array did not couple to the plasmonic gap mode. These results demonstrate how ultrafast microscopy can provide insight into energy relaxation pathways and, specifically, how nanocavities in arrays can show single-unit nanolaser properties.
RESUMEN
Aerosol-induced haze problem has become a serious environmental concern. Filtration is widely applied to remove aerosols from gas streams. Despite classical filtration theories, the nanoscale capture and evolution of aerosols is not yet clearly understood. Here we report an in situ investigation on the nanoscale capture and evolution of aerosols on polyimide nanofibers. We discovered different capture and evolution behaviors among three types of aerosols: wetting liquid droplets, nonwetting liquid droplets, and solid particles. The wetting droplets had small contact angles and could move, coalesce, and form axisymmetric conformations on polyimide nanofibers. In contrast, the nonwetting droplets had a large contact angle on polyimide nanofibers and formed nonaxisymmetric conformations. Different from the liquid droplets, the solid particles could not move along the nanofibers and formed dendritic structures. This study provides an important insight for obtaining a deep understanding of the nanoscale capture and evolution of aerosols and benefits future design and development of advanced filters.
RESUMEN
This review focuses on coherent light sources at the nanoscale, and specifically on lasers exploiting plasmonic cavities that can beat the diffraction limit of light. Conventional lasers exhibit coherent, intense, and directional emission with cavity sizes much larger than their operating wavelength. Plasmon lasers show ultrasmall mode confinement, support strong light-matter interactions, and represent a class of devices with extremely small sizes. We discuss the differences between plasmon lasers and traditional ones, and we highlight advances in directionality and tunability through innovative cavity designs and new materials. Challenges and future prospects are also discussed.
RESUMEN
Coherent light sources have been demonstrated based on a wide range of nanostructures, however, little effort has been devoted to probing their underlying coherence properties. Here, we report long-range spatial coherence of lattice plasmon lasers constructed from a periodic array of gold nanoparticles and a liquid gain medium at room temperature. By combining spatial and temporal interferometry, we demonstrate millimeter-scale (â¼1 mm) spatial coherence and picosecond (â¼2 ps) temporal coherence. The long-range spatial coherence occurs even without the presence of strong coupling with the lattice plasmon mode extending over macroscopic distances in the lasing regime. This plasmonic lasing system thus provides a platform for understanding the emergence of long-range coherence from collections of nanoscale resonators and points toward novel types of distributed lasing sources.
RESUMEN
Face masks are widely used to filter airborne pollutants, especially when particulate matter (PM) pollution has become a serious concern to public health. Here, the concept of thermal management is introduced into face masks for the first time to enhance the thermal comfort of the user. A system of nanofiber on nanoporous polyethylene (fiber/nanoPE) is developed where the nanofibers with strong PM adhesion ensure high PM capture efficiency (99.6% for PM2.5) with low pressure drop and the nanoPE substrate with high-infrared (IR) transparency (92.1%, weighted based on human body radiation) results in effective radiative cooling. We further demonstrate that by coating nanoPE with a layer of Ag, the fiber/Ag/nanoPE mask shows a high IR reflectance (87.0%) and can be used for warming purposes. These multifunctional face mask designs can be explored for both outdoor and indoor applications to protect people from PM pollutants and simultaneously achieve personal thermal comfort.
RESUMEN
Quantum emitters in two-dimensional materials are promising candidates for studies of light-matter interaction and next generation, integrated on-chip quantum nanophotonics. However, the realization of integrated nanophotonic systems requires the coupling of emitters to optical cavities and resonators. In this work, we demonstrate hybrid systems in which quantum emitters in 2D hexagonal boron nitride (hBN) are deterministically coupled to high-quality plasmonic nanocavity arrays. The plasmonic nanoparticle arrays offer a high-quality, low-loss cavity in the same spectral range as the quantum emitters in hBN. The coupled emitters exhibit enhanced emission rates and reduced fluorescence lifetimes, consistent with Purcell enhancement in the weak coupling regime. Our results provide the foundation for a versatile approach for achieving scalable, integrated hybrid systems based on low-loss plasmonic nanoparticle arrays and 2D materials.
RESUMEN
Lithium intercalation of MoS2 is generally believed to introduce a phase transition from H phase (semiconducting) to T phase (metallic). However, during the intercalation process, a spatially sharp boundary is usually formed between the fully intercalated T phase MoS2 and non-intercalated H phase MoS2. The intermediate state, i.e., lightly intercalated H phase MoS2 without a phase transition, is difficult to investigate by optical-microscope-based spectroscopy due to the narrow size. Here, we report the stabilization of the intermediate state across the whole flake of twisted bilayer MoS2. The twisted bilayer system allows the lithium to intercalate from the top surface and enables fast Li-ion diffusion by the reduced interlayer interaction. The E2g Raman mode of the intermediate state shows a peak splitting behavior. Our simulation results indicate that the intermediate state is stabilized by lithium-induced symmetry breaking of the H phase MoS2. Our results provide an insight into the non-uniform intercalation during battery charging and discharging, and also open a new opportunity to modulate the properties of twisted 2D systems with guest species doping in the Moiré structures.
RESUMEN
Nanoporous membranes with two-dimensional materials such as graphene oxide have attracted attention in volatile organic compounds (VOCs) and H2 adsorption because of their unique molecular sieving properties and operational simplicity. However, agglomeration of graphene sheets and low efficiency remain challenging. Therefore, we designed hierarchical nanoporous membranes (HNMs), a class of nanocomposites combined with a carbon sphere and graphene oxide. Hierarchical carbon spheres, prepared following Murray's law using chemical activation incorporating microwave heating, act as spacers and adsorbents. Hierarchical carbon spheres preclude the agglomeration of graphene oxide, while graphene oxide sheets physically disperse, ensuring structural stability. The obtained HNMs contain micropores that are dominated by a combination of ultramicropores and mesopores, resulting in high VOCs/H2 adsorption capacity, up to 235 and 352 mg/g at 200 ppmv and 3.3 weight % (77 K and 1.2 bar), respectively. Our work substantially expands the potential for HNMs applications in the environmental and energy fields.
RESUMEN
In lithium-sulfur (Li-S) chemistry, the electrically/ionically insulating nature of sulfur and Li2S leads to sluggish electron/ion transfer kinetics for sulfur species conversion. Sulfur and Li2S are recognized as solid at room temperature, and solid-liquid phase transitions are the limiting steps in Li-S batteries. Here, we visualize the distinct sulfur growth behaviors on Al, carbon, Ni current collectors and demonstrate that (i) liquid sulfur generated on Ni provides higher reversible capacity, faster kinetics, and better cycling life compared to solid sulfur; and (ii) Ni facilitates the phase transition (e.g., Li2S decomposition). Accordingly, light-weight, 3D Ni-based current collector is designed to control the deposition and catalytic conversion of sulfur species toward high-performance Li-S batteries. This work provides insights on the critical role of the current collector in determining the physical state of sulfur and elucidates the correlation between sulfur state and battery performance, which will advance electrode designs in high-energy Li-S batteries.
RESUMEN
Manipulating liquids with tunable shape and optical functionalities in real time is important for electroactive flow devices and optoelectronic devices, but remains a great challenge. Here, we demonstrate electrotunable liquid sulfur microdroplets in an electrochemical cell. We observe electrowetting and merging of sulfur droplets under different potentiostatic conditions, and successfully control these processes via selective design of sulfiphilic/sulfiphobic substrates. Moreover, we employ the electrowetting phenomena to create a microlens based on the liquid sulfur microdroplets and tune its characteristics in real time through changing the shape of the liquid microdroplets in a fast, repeatable, and controlled manner. These studies demonstrate a powerful in situ optical battery platform for unraveling the complex reaction mechanism of sulfur chemistries and for exploring the rich material properties of the liquid sulfur, which shed light on the applications of liquid sulfur droplets in devices such as microlenses, and potentially other electrotunable and optoelectronic devices.
RESUMEN
It has recently been shown that sulfur, a solid material in its elementary form S8, can stay in a supercooled state as liquid sulfur in an electrochemical cell. We establish that this newly discovered state could have implications for lithium-sulfur batteries. Here, through in situ studies of electrochemical sulfur generation, we show that liquid (supercooled) and solid elementary sulfur possess very different areal capacities over the same charging period. To control the physical state of sulfur, we studied its growth on two-dimensional layered materials. We found that on the basal plane, only liquid sulfur accumulates; by contrast, at the edge sites, liquid sulfur accumulates if the thickness of the two-dimensional material is small, whereas solid sulfur nucleates if the thickness is large (tens of nanometres). Correlating the sulfur states with their respective areal capacities, as well as controlling the growth of sulfur on two-dimensional materials, could provide insights for the design of future lithium-sulfur batteries.