Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Small ; 15(21): e1900219, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30946524

RESUMEN

All-inorganic cesium lead triiodide (CsPbI3 ) perovskite is considered a promising solution-processable semiconductor for highly stable optoelectronic and photovoltaic applications. However, despite its excellent optoelectronic properties, the phase instability of CsPbI3 poses a critical hurdle for practical application. In this study, a novel stain-mediated phase stabilization strategy is demonstrated to significantly enhance the phase stability of cubic α-phase CsPbI3 . Careful control of the degree of spatial confinement induced by anodized aluminum oxide (AAO) templates with varying pore sizes leads to effective manipulation of the phase stability of α-CsPbI3 . The Williamson-Hall method in conjunction with density functional theory calculations clearly confirms that the strain imposed on the perovskite lattice when confined in vertically aligned nanopores can alter the formation energy of the system, stabilizing α-CsPbI3 at room temperature. Finally, the CsPbI3 grown inside nanoporous AAO templates exhibits exceptional phase stability over three months under ambient conditions, in which the resulting light-emitting diode reveals a natural red color emission with very narrow bandwidth (full width at half maximum of 33 nm) at 702 nm. The universally applicable template-based stabilization strategy can give in-depth insights on the strain-mediated phase transition mechanism in all-inorganic perovskites.

2.
ACS Appl Mater Interfaces ; 12(12): 13824-13835, 2020 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-32134237

RESUMEN

Flexible perovskite solar cells (PSCs) have attracted significant interest as promising candidates for portable and wearable devices. Copper nanowires (CuNWs) are promising candidates for transparent conductive electrodes for flexible PSCs because of their excellent conductivity, flexibility, and cost-effectiveness. However, because of the thermal/chemical instability of CuNWs, they require a protective layer for application in PSCs. Previous PSCs with CuNW-based electrodes generally exhibited poor performances compared with their indium tin oxide-based counterparts because of the neglect of the interfacial energetics between the electron transport layer (ETL) and CuNWs. Herein, an Al-doped ZnO (AZO) protective layer fabricated using atomic layer deposition is introduced. The AZO/CuNW-based composite electrode exhibits improved thermal/chemical stability and favorable band alignment between the ETL and CuNWs, based on the Al dopant concentration tuning. As a result, the Al content gradient AZO (g-AZO), composed of three successively deposited AZO layers, leads to highly efficient flexible PSCs with a power conversion efficiency (PCE) of 14.18%, whereas the PCE of PSCs with a non-g-AZO layer is 12.34%. This improvement can be attributed to the efficient electron extraction and reduced charge recombination. Furthermore, flexible PSCs based on g-AZO-based composite electrodes retain their initial PCE, even after 600 bending cycles, demonstrating excellent mechanical stability.

3.
ACS Appl Mater Interfaces ; 10(36): 30337-30347, 2018 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-30118211

RESUMEN

Organic-inorganic hybrid perovskite solar cells (PSCs) have recently attracted tremendous attention because of their excellent efficiency and the advantage of a low-cost fabrication process. As a transparent electrode for PSCs, the application of copper nanowire (CuNW)-network was limited because of its thermal/chemical instability, despite its advantages in terms of high optical/electrical properties and low-cost production. Here, the copper-nickel core-shell nanowire (Cu@Ni NW)-based composite electrode is proposed as a bottom window electrode for PSCs, without the involvement of a high-cost precious metal and vacuum process. The dense and uniform Ni protective shell for CuNWs is attainable by simple electroless plating, and the resulting Cu@Ni NWs exhibit outstanding chemical stability as well as thermal stability compared with bare CuNWs. When the Ni layer with the optimal thickness is introduced, the Cu@Ni NW electrode shows a high transmittance of 80.5% AVT at 400-800 nm, and a sheet resistance of 49.3 ± 5 Ω sq-1. Using the highly stable Cu@Ni NWs, the composite electrode structure is fabricated with sol-gel-derived Al-doped zinc oxide (AZO) over-layer for better charge collection and additional protection against iodine ions from the perovskite. The PSCs fabricated with AZO/Cu@Ni NW-based composite electrode demonstrate a power conversion efficiency (PCE) of 12.2% and excellent long-term stability maintaining 91% of initial PCE after being stored for 500 h at room temperature. Experimental results demonstrate the potential of highly stable Cu@Ni NW-based electrodes as the cost-effective alternative transparent electrode, which can facilitate the commercialization of PSCs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA