Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 554(7690): 118-122, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29364876

RESUMEN

The most abundant viruses on Earth are thought to be double-stranded DNA (dsDNA) viruses that infect bacteria. However, tailed bacterial dsDNA viruses (Caudovirales), which dominate sequence and culture collections, are not representative of the environmental diversity of viruses. In fact, non-tailed viruses often dominate ocean samples numerically, raising the fundamental question of the nature of these viruses. Here we characterize a group of marine dsDNA non-tailed viruses with short 10-kb genomes isolated during a study that quantified the diversity of viruses infecting Vibrionaceae bacteria. These viruses, which we propose to name the Autolykiviridae, represent a novel family within the ancient lineage of double jelly roll (DJR) capsid viruses. Ecologically, members of the Autolykiviridae have a broad host range, killing on average 34 hosts in four Vibrio species, in contrast to tailed viruses which kill on average only two hosts in one species. Biochemical and physical characterization of autolykiviruses reveals multiple virion features that cause systematic loss of DJR viruses in sequencing and culture-based studies, and we describe simple procedural adjustments to recover them. We identify DJR viruses in the genomes of diverse major bacterial and archaeal phyla, and in marine water column and sediment metagenomes, and find that their diversity greatly exceeds the diversity that is currently captured by the three recognized families of such viruses. Overall, these data suggest that viruses of the non-tailed dsDNA DJR lineage are important but often overlooked predators of bacteria and archaea that impose fundamentally different predation and gene transfer regimes on microbial systems than on tailed viruses, which form the basis of all environmental models of bacteria-virus interactions.


Asunto(s)
Organismos Acuáticos/virología , Bacterias/virología , Virus ADN/clasificación , Virus ADN/patogenicidad , Filogenia , Archaea/virología , Sesgo , Proteínas de la Cápside/metabolismo , Virus ADN/genética , Virus ADN/aislamiento & purificación , Metagenómica , Vibrio/virología
2.
Pharmacol Res ; 189: 106692, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36773708

RESUMEN

Ubiquitin proteasome activity is suppressed in enzalutamide resistant prostate cancer cells, and the heat shock protein 70/STIP1 homology and U-box-containing protein 1 (HSP70/STUB1) machinery are involved in androgen receptor (AR) and AR variant protein stabilization. Targeting HSP70 could be a viable strategy to overcome resistance to androgen receptor signaling inhibitor (ARSI) in advanced prostate cancer. Here, we showed that a novel HSP70 allosteric inhibitor, JG98, significantly suppressed drug-resistant C4-2B MDVR and CWR22Rv1 cell growth, and enhanced enzalutamide treatment. JG98 also suppressed cell growth in conditional reprogramed cell cultures (CRCs) and organoids derived from advanced prostate cancer patient samples. Mechanistically, JG98 degraded AR/AR-V7 expression in resistant cells and promoted STUB1 nuclear translocation to bind AR-V7. Knockdown of the E3 ligase STUB1 significantly diminished the anticancer effects and partially restored AR-V7 inhibitory effects of JG98. JG231, a more potent analog developed from JG98, effectively suppressed the growth of the drug-resistant prostate cancer cells, CRCs, and organoids. Notably, the combination of JG231 and enzalutamide synergistically inhibited AR/AR-V7 expression and suppressed CWR22Rv1 xenograft tumor growth. Inhibition of HSP70 using novel small-molecule inhibitors coordinates with STUB1 to regulate AR/AR-V7 protein stabilization and ARSI resistance.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Receptores Androgénicos , Masculino , Humanos , Receptores Androgénicos/metabolismo , Antagonistas de Andrógenos , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Línea Celular Tumoral , Nitrilos/farmacología , Antagonistas de Receptores Androgénicos , Andrógenos/farmacología , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP70 de Choque Térmico/farmacología , Resistencia a Antineoplásicos , Ubiquitina-Proteína Ligasas
3.
Mol Ecol ; 28(10): 2694-2710, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30933383

RESUMEN

Theories involving niche diversification to explain high levels of tropical diversity propose that species are more likely to co-occur if they partition at least one dimension of their ecological niche space. Yet, numerous species appear to have widely overlapping niches based upon broad categorizations of resource use or functional traits. In particular, the extent to which food partitioning contributes to species coexistence in hyperdiverse tropical ecosystems remains unresolved. Here, we use a molecular approach to investigate inter- and intraspecific dietary partitioning between two species of damselfish (Dascyllus flavicaudus, Chromis viridis) that commonly co-occur in branching corals. Species-level identification of their diverse zooplankton prey revealed significant differences in diet composition between species despite their seemingly similar feeding strategies. Dascyllus exhibited a more diverse diet than Chromis, whereas Chromis tended to select larger prey items. A large calanoid copepod, Labidocera sp., found in low density and higher in the water column during the day, explained more than 19% of the variation in dietary composition between Dascyllus and Chromis. Dascyllus did not significantly shift its diet in the presence of Chromis, which suggests intrinsic differences in feeding behaviour. Finally, prey composition significantly shifted during the ontogeny of both fish species. Our findings show that levels of dietary specialization among coral reef associated species have likely been underestimated, and they underscore the importance of characterizing trophic webs in tropical ecosystems at higher levels of taxonomic resolution. They also suggest that niche redundancy may not be as common as previously thought.


Asunto(s)
Ecosistema , Peces/fisiología , Cadena Alimentaria , Perciformes/fisiología , Animales , Antozoos/fisiología , Arrecifes de Coral , Dieta , Conducta Alimentaria/fisiología , Conducta Predatoria/fisiología
4.
Nature ; 500(7464): 598-602, 2013 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-23945587

RESUMEN

Although recent studies have indicated roles of long non-coding RNAs (lncRNAs) in physiological aspects of cell-type determination and tissue homeostasis, their potential involvement in regulated gene transcription programs remains rather poorly understood. The androgen receptor regulates a large repertoire of genes central to the identity and behaviour of prostate cancer cells, and functions in a ligand-independent fashion in many prostate cancers when they become hormone refractory after initial androgen deprivation therapy. Here we report that two lncRNAs highly overexpressed in aggressive prostate cancer, PRNCR1 (also known as PCAT8) and PCGEM1, bind successively to the androgen receptor and strongly enhance both ligand-dependent and ligand-independent androgen-receptor-mediated gene activation programs and proliferation in prostate cancer cells. Binding of PRNCR1 to the carboxy-terminally acetylated androgen receptor on enhancers and its association with DOT1L appear to be required for recruitment of the second lncRNA, PCGEM1, to the androgen receptor amino terminus that is methylated by DOT1L. Unexpectedly, recognition of specific protein marks by PCGEM1-recruited pygopus 2 PHD domain enhances selective looping of androgen-receptor-bound enhancers to target gene promoters in these cells. In 'resistant' prostate cancer cells, these overexpressed lncRNAs can interact with, and are required for, the robust activation of both truncated and full-length androgen receptor, causing ligand-independent activation of the androgen receptor transcriptional program and cell proliferation. Conditionally expressed short hairpin RNA targeting these lncRNAs in castration-resistant prostate cancer cell lines strongly suppressed tumour xenograft growth in vivo. Together, these results indicate that these overexpressed lncRNAs can potentially serve as a required component of castration-resistance in prostatic tumours.


Asunto(s)
ARN Largo no Codificante/genética , Receptores Androgénicos/metabolismo , Activación Transcripcional/genética , Regulación hacia Arriba/genética , Animales , Castración , Línea Celular Tumoral , Proliferación Celular , Elementos de Facilitación Genéticos/genética , Humanos , Masculino , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Regiones Promotoras Genéticas/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Factores de Transcripción/metabolismo
5.
Nature ; 498(7454): 367-70, 2013 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-23698366

RESUMEN

Traditional culture-based methods have incompletely defined the microbial landscape of common recalcitrant human fungal skin diseases, including athlete's foot and toenail infections. Skin protects humans from invasion by pathogenic microorganisms and provides a home for diverse commensal microbiota. Bacterial genomic sequence data have generated novel hypotheses about species and community structures underlying human disorders. However, microbial diversity is not limited to bacteria; microorganisms such as fungi also have major roles in microbial community stability, human health and disease. Genomic methodologies to identify fungal species and communities have been limited compared with those that are available for bacteria. Fungal evolution can be reconstructed with phylogenetic markers, including ribosomal RNA gene regions and other highly conserved genes. Here we sequenced and analysed fungal communities of 14 skin sites in 10 healthy adults. Eleven core-body and arm sites were dominated by fungi of the genus Malassezia, with only species-level classifications revealing fungal-community composition differences between sites. By contrast, three foot sites--plantar heel, toenail and toe web--showed high fungal diversity. Concurrent analysis of bacterial and fungal communities demonstrated that physiologic attributes and topography of skin differentially shape these two microbial communities. These results provide a framework for future investigation of the contribution of interactions between pathogenic and commensal fungal and bacterial communities to the maintainenace of human health and to disease pathogenesis.


Asunto(s)
Bacterias/aislamiento & purificación , Biodiversidad , Hongos/aislamiento & purificación , Piel/microbiología , Adulto , Bacterias/clasificación , Bacterias/genética , Bases de Datos Genéticas , District of Columbia , Femenino , Hongos/clasificación , Hongos/genética , Salud , Homeostasis , Humanos , Malassezia/clasificación , Malassezia/genética , Malassezia/aislamiento & purificación , Masculino , Datos de Secuencia Molecular , Piel/anatomía & histología , Adulto Joven
6.
Proc Natl Acad Sci U S A ; 111(25): 9235-40, 2014 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-24928520

RESUMEN

Understanding the mechanisms by which compounds discovered using cell-based phenotypic screening strategies might exert their effects would be highly augmented by new approaches exploring their potential interactions with the genome. For example, altered androgen receptor (AR) transcriptional programs, including castration resistance and subsequent chromosomal translocations, play key roles in prostate cancer pathological progression, making the quest for identification of new therapeutic agents and an understanding of their actions a continued priority. Here we report an approach that has permitted us to uncover the sites and mechanisms of action of a drug, referred to as "SD70," initially identified by phenotypic screening for inhibitors of ligand and genotoxic stress-induced translocations in prostate cancer cells. Based on synthesis of a derivatized form of SD70 that permits its application for a ChIP-sequencing-like approach, referred to as "Chem-seq," we were next able to efficiently map the genome-wide binding locations of this small molecule, revealing that it largely colocalized with AR on regulatory enhancers. Based on these observations, we performed the appropriate global analyses to ascertain that SD70 inhibits the androgen-dependent AR program, and prostate cancer cell growth, acting, at least in part, by functionally inhibiting the Jumonji domain-containing demethylase, KDM4C. Global location of candidate drugs represents a powerful strategy for new drug development by mapping genome-wide location of small molecules, a powerful adjunct to contemporary drug development strategies.


Asunto(s)
Antagonistas de Receptores Androgénicos/farmacología , Sistemas de Liberación de Medicamentos/métodos , Proteínas de Neoplasias/genética , Neoplasias de la Próstata/genética , Receptores Androgénicos/genética , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Animales , Antineoplásicos , Línea Celular Tumoral , Análisis Mutacional de ADN/métodos , Humanos , Masculino , Ratones , Proteínas de Neoplasias/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Receptores Androgénicos/metabolismo , Translocación Genética
7.
Cephalalgia ; 36(2): 148-61, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25926620

RESUMEN

AIM: The aim of this article is to evaluate the safety and efficacy of perimenstrual telcagepant, a CGRP receptor antagonist, for headache prophylaxis. METHODS: We conducted a randomized, double-blind, placebo-controlled, six-month trial in women with migraine for ≥ 3 months who experienced perimenstrual headaches. Women were randomized to telcagepant 140 mg or placebo (2:1 ratio) for seven consecutive days perimenstrually. Safety was assessed by adverse events and laboratory tests. The primary efficacy endpoint was mean monthly headache days in the subset of women reporting perimenstrual migraine (-2 days to +3 days of menses onset) and ≥ 5 moderate or severe migraines per month prior to entering the trial. RESULTS: Telcagepant was generally well tolerated: 66/2660 (2.5%) on telcagepant and 36/1326 (2.7%) on placebo discontinued because of a clinical adverse event. The percentages of patients with clinical adverse events, laboratory adverse events, or discontinuation because of a laboratory adverse event were also similar between treatments. Alanine aminotransferase elevations ≥ 3x normal occurred in 0.6% of women on telcagepant and 0.4% on placebo. Three women on telcagepant vs none on placebo had alanine aminotransferase elevations ≥ 8× normal. In the efficacy subset there was no significant effect of telcagepant (n = 887) vs placebo (n = 447) in mean monthly headache days (treatment difference -0.5 day (95% CI: -1.1, 0.1)). However, telcagepant was associated with a reduction in on-drug headache days (treatment difference -0.4 day (95% CI: -0.5, -0.2), nominal p < 0.001). CONCLUSIONS: Telcagepant 140 mg taken perimenstrually for seven days was generally well tolerated, but was associated with transaminase elevations. Telcagepant did not reduce monthly headache frequency, but did reduce perimenstrual headaches.


Asunto(s)
Azepinas/uso terapéutico , Imidazoles/uso terapéutico , Trastornos Migrañosos/prevención & control , Síndrome Premenstrual/complicaciones , Adulto , Alanina Transaminasa/sangre , Péptido Relacionado con Gen de Calcitonina/antagonistas & inhibidores , Antagonistas del Receptor Peptídico Relacionado con el Gen de la Calcitonina , Método Doble Ciego , Femenino , Humanos , Trastornos Migrañosos/etiología
8.
BMC Med ; 13: 206, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26329698

RESUMEN

Multiple mechanisms of resistance contribute to the inevitable progression of hormone-sensitive prostate cancer to castration-resistant prostate cancer (CRPC). Currently approved therapies for CRPC include systemic chemotherapy (docetaxel and cabazitaxel) and agents targeting the resistance pathways leading to CRPC, including enzalutamide and abiraterone. While there is significant survival benefit, primary and secondary resistance to these therapies develops rapidly. Up to one-third of patients have primary resistance to enzalutamide and abiraterone; the remaining patients eventually progress on treatment. Understanding the mechanisms of resistance resulting in progression as well as identifying new targetable pathways remains the focus of current prostate cancer research. We review current knowledge of mechanisms of resistance to the currently approved treatments, development of adjunctive therapies, and identification of new pathways being targeted for therapeutic purposes.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Progresión de la Enfermedad , Humanos , Masculino
9.
Oncogene ; 43(30): 2325-2337, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38877132

RESUMEN

Treatment-induced neuroendocrine prostate cancer (t-NEPC) often arises from adenocarcinoma via lineage plasticity in response to androgen receptor signaling inhibitors, such as enzalutamide. However, the specific regulators and targets involved in the transition to NEPC are not well understood. Plexin D1 (PLXND1) is a cellular receptor of the semaphorin (SEMA) family that plays important roles in modulating the cytoskeleton and cell adhesion. Here, we found that PLXND1 was highly expressed and positively correlated with neuroendocrine markers in patients with NEPC. High PLXND1 expression was associated with poorer prognosis in prostate cancer patients. Additionally, PLXND1 was upregulated and negatively regulated by androgen receptor signaling in enzalutamide-resistant cells. Knockdown or knockout of PLXND1 inhibited neural lineage pathways, thereby suppressing NEPC cell proliferation, patient derived xenograft (PDX) tumor organoid viability, and xenograft tumor growth. Mechanistically, the heat shock protein 70 (HSP70) regulated PLXND1 protein stability through degradation, and inhibition of HSP70 decreased PLXND1 expression and NEPC organoid growth. In summary, our findings indicate that PLXND1 could serve as a promising therapeutic target and molecular marker for NEPC.


Asunto(s)
Resistencia a Antineoplásicos , Humanos , Masculino , Animales , Ratones , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/tratamiento farmacológico , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Linaje de la Célula/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Plasticidad de la Célula/genética , Receptores de Superficie Celular/metabolismo , Receptores de Superficie Celular/genética , Pronóstico , Glicoproteínas de Membrana , Péptidos y Proteínas de Señalización Intracelular
10.
Res Sq ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38585965

RESUMEN

Treatment-induced neuroendocrine prostate cancer (t-NEPC) often arises from adenocarcinoma via lineage plasticity in response to androgen receptor signaling inhibitors, such as enzalutamide. However, the specific regulators and targets involved in the transition to NEPC are not well understood. Plexin D1 (PLXND1) is a cellular receptor of the semaphorin (SEMA) family that plays important roles in modulating the cytoskeleton and cell adhesion. Here, we found that PLXND1 is highly expressed and positively correlated with neuroendocrine markers in patients with NEPC. High PLXND1 expression is associated with poorer prognosis in prostate cancer patients. Additionally, PLXND1 was upregulated and negatively regulated by androgen receptor signaling in enzalutamide-resistant cells. Knockdown or knockout of PLXND1 inhibit neural lineage pathways, suppressing NEPC cell proliferation, PDX tumor organoid viability, and xenograft tumor growth. Mechanistically, the chaperone protein HSP70 regulates PLXND1 protein stability through degradation, and inhibition of HSP70 decreases PLXND1 expression and NEPC organoid growth. In summary, our findings suggest that PLXND1 could be a new therapeutic target and molecular indicator for NEPC.

11.
AAPS J ; 26(3): 36, 2024 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-38546903

RESUMEN

Selective chemical inhibitors are critical for reaction phenotyping to identify drug-metabolizing enzymes that are involved in the elimination of drug candidates. Although relatively selective inhibitors are available for the major cytochrome P450 enzymes (CYP), they are quite limited for the less common CYPs and non-CYPs. To address this gap, we developed a multiplexed high throughput screening (HTS) assay using 20 substrate reactions of multiple enzymes to simultaneously monitor the inhibition of enzymes in a 384-well format. Four 384-well assay plates can be run at the same time to maximize throughput. This is the first multiplexed HTS assay for drug-metabolizing enzymes reported. The HTS assay is technologically enabled with state-of-the-art robotic systems and highly sensitive modern LC-MS/MS instrumentation. Virtual screening is utilized to identify inhibitors for HTS based on known inhibitors and enzyme structures. Screening of ~4600 compounds generated many hits for many drug-metabolizing enzymes including the two time-dependent and selective aldehyde oxidase inhibitors, erlotinib and dibenzothiophene. The hit rate is much higher than that for the traditional HTS for biological targets due to the promiscuous nature of the drug-metabolizing enzymes and the biased compound selection process. Future efforts will focus on using this method to identify selective inhibitors for enzymes that do not currently have quality hits and thoroughly characterizing the newly identified selective inhibitors from our screen. We encourage colleagues from other organizations to explore their proprietary libraries using a similar approach to identify better inhibitors that can be used across the industry.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Espectrometría de Masas en Tándem , Humanos , Cromatografía Liquida , Sistema Enzimático del Citocromo P-450 , Hepatocitos , Inhibidores Enzimáticos/farmacología
12.
Nat Commun ; 15(1): 6626, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103353

RESUMEN

N-Myc is a key driver of neuroblastoma and neuroendocrine prostate cancer (NEPC). One potential way to circumvent the challenge of undruggable N-Myc is to target the protein homeostasis (proteostasis) system that maintains N-Myc levels. Here, we identify heat shock protein 70 (HSP70) as a top partner of N-Myc, which binds a conserved "SELILKR" motif and prevents the access of E3 ubiquitin ligase, STIP1 homology and U-box containing protein 1 (STUB1), possibly through steric hindrance. When HSP70's dwell time on N-Myc is increased by treatment with the HSP70 allosteric inhibitor, STUB1 is in close proximity with N-Myc and becomes functional to promote N-Myc ubiquitination on the K416 and K419 sites and forms polyubiquitination chains linked by the K11 and K63 sites. Notably, HSP70 inhibition significantly suppressed NEPC tumor growth, increased the efficacy of aurora kinase A (AURKA) inhibitors, and limited the expression of neuroendocrine-related pathways.


Asunto(s)
Proteínas HSP70 de Choque Térmico , Neoplasias de la Próstata , Proteostasis , Ubiquitina-Proteína Ligasas , Ubiquitinación , Masculino , Humanos , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación/efectos de los fármacos , Línea Celular Tumoral , Animales , Aurora Quinasa A/metabolismo , Aurora Quinasa A/genética , Aurora Quinasa A/antagonistas & inhibidores , Proteína Proto-Oncogénica N-Myc/metabolismo , Proteína Proto-Oncogénica N-Myc/genética , Ratones , Carcinoma Neuroendocrino/metabolismo , Carcinoma Neuroendocrino/genética , Carcinoma Neuroendocrino/tratamiento farmacológico , Carcinoma Neuroendocrino/patología , Tumores Neuroendocrinos/metabolismo , Tumores Neuroendocrinos/tratamiento farmacológico , Tumores Neuroendocrinos/genética , Tumores Neuroendocrinos/patología
13.
ArXiv ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39148931

RESUMEN

The design and optimization of laser-Compton x-ray systems based on compact distributed charge accelerator structures can enable micron-scale imaging of disease and the concomitant production of beams of Very High Energy Electrons (VHEEs) capable of producing FLASH-relevant dose rates. The physics of laser-Compton x-ray scattering ensures that the scattered x-rays follow exactly the trajectory of the incident electrons, thus providing a route to image-guided, VHEE FLASH radiotherapy. The keys to a compact architecture capable of producing both laser-Compton x-rays and VHEEs are the use of X-band RF accelerator structures which have been demonstrated to operate with over 100 MeV/m acceleration gradients. The operation of these structures in a distributed charge mode in which each radiofrequency (RF) cycle of the drive RF pulse is filled with a low-charge, high-brightness electron bunch is enabled by the illumination of a high-brightness photogun with a train of UV laser pulses synchronized to the frequency of the underlying accelerator system. The UV pulse trains are created by a patented pulse synthesis approach which utilizes the RF clock of the accelerator to phase and amplitude modulate a narrow band continuous wave (CW) seed laser. In this way it is possible to produce up to 10 {\mu}A of average beam current from the accelerator. Such high current from a compact accelerator enables production of sufficient x-rays via laser-Compton scattering for clinical imaging and does so from a machine of "clinical" footprint. At the same time, the production of 1000 or greater individual micro-bunches per RF pulse enables > 10 nC of charge to be produced in a macrobunch of < 100 ns. The design, construction, and test of the 100-MeV class prototype system in Irvine, CA is also presented.

14.
J Cell Sci ; 124(Pt 3): 483-92, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21224395

RESUMEN

α4ß1 integrin regulates cell migration via cytoplasmic interactions. Here, we report an association between the cytoplasmic tail of α4 integrin (α4 tail) and non-muscle myosin IIA (MIIA), demonstrated by co-immunoprecipitation of the MIIA heavy chain (HC) with anti-α4-integrin antibodies and pull-down of MIIA-HC with recombinant α4 tail from cell lysates. The association between the α4 tail and MIIA does not require paxillin binding or phosphorylation at Ser988 in the α4 tail. We found that substituting Glu982 in the α4 tail with alanine (E982A) disrupts the α4-MIIA association without interfering with the paxillin binding or Ser988 phosphorylation. By comparing stably transfected CHO cells, we show that the E982A mutation reduces the ability of α4ß1 integrin to mediate cell spreading and to promote front-back polarization. In addition, we show that E982A impairs shear-flow-induced migration of the α4-integrin-expressing CHO cells by reducing their migration speed and directional persistence. The E982A mutation also leads to defects in the organization of MIIA filament bundles. Furthermore, when cells are plated on fibronectin and simulated with shear flow, α4ß1 integrin forms filament-like patterns that co-align with MIIA filament bundles. These results provide a new mechanism for linking integrins to the actomyosin cytoskeleton and for regulating cell migration by integrins and non-muscle myosin II.


Asunto(s)
Movimiento Celular/fisiología , Integrina alfa4/metabolismo , Integrina alfa4beta1/metabolismo , Miosina Tipo IIA no Muscular/metabolismo , Sustitución de Aminoácidos , Animales , Células CHO , Cricetinae , Cricetulus , Humanos , Ratones , Paxillin/metabolismo , Unión Proteica
15.
J Clin Microbiol ; 51(3): 752-8, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23254127

RESUMEN

With increasing rates of antibiotic resistance, bacterial infections have become more difficult to treat, elevating the importance of surveillance and prevention. Effective surveillance relies on the availability of rapid, cost-effective, and informative typing methods to monitor bacterial isolates. PCR-based typing assays are fast and inexpensive, but their utility is limited by the lack of targets which are capable of distinguishing between strains within a species. To identify highly informative PCR targets from the growing base of publicly available bacterial genome sequences, we developed pan-PCR. This computer algorithm uses existing genome sequences for isolates of a species of interest and identifies a set of genes whose patterns of presence or absence provide the best discrimination between strains in this species. A set of PCR primers targeting the identified genes is then designed, with each PCR product being of a different size to allow multiplexing. These target DNA regions and PCR primers can then be utilized to type bacterial isolates. To evaluate pan-PCR, we designed an assay for the emerging pathogen Acinetobacter baumannii. Taking as input a set of 29 previously sequenced genomes, pan-PCR identified 6 genetic loci whose presence or absence was capable of distinguishing all the input strains. This assay was applied to a set of patient isolates, and its discriminatory power was compared to that of multilocus sequence typing (MLST) and whole-genome optical maps. We found that the pan-PCR assay was capable of making clinically relevant distinctions between strains with identical MLST profiles and showed a discriminatory power similar to that of optical maps. Pan-PCR represents a tool capable of exploiting available genome sequence data to design highly discriminatory PCR assays. The ease of design and implementation makes this approach feasible for diagnostic facilities of all sizes.


Asunto(s)
Biología Computacional/métodos , Genoma Bacteriano , Tipificación Molecular/métodos , Reacción en Cadena de la Polimerasa/métodos , Algoritmos , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Infecciones Bacterianas/epidemiología , Infecciones Bacterianas/microbiología , Cartilla de ADN/genética , Humanos , Epidemiología Molecular/métodos , Programas Informáticos
16.
J Urol ; 189(6): 2317-26, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23079374

RESUMEN

PURPOSE: Renal cell carcinoma often presents asymptomatically and patients are commonly diagnosed at the metastatic stage, when treatment options are limited and survival is poor. Since progression-free survival using current therapy for metastatic renal cell carcinoma is only 1 to 2 years and existing drugs are associated with a high resistance rate, new pharmacological targets are needed. We identified and evaluated the nuclear exporter protein CRM1 as a novel potential therapy for renal cell carcinoma. MATERIALS AND METHODS: We tested the efficacy of the CRM1 inhibitors KPT-185 and 251 in several renal cell carcinoma cell lines and in a renal cell carcinoma xenograft model. Apoptosis and cell cycle arrest were quantified and localization of p53 family proteins was assessed using standard techniques. RESULTS: KPT-185 attenuated CRM1 and showed increased cytotoxicity in renal cell carcinoma cells in vitro with evidence of increased apoptosis as well as cell cycle arrest. KPT-185 caused p53 and p21 to remain primarily in the nucleus in all renal cell carcinoma cell lines, suggesting that the mechanism of action of these compounds depends on tumor suppressor protein localization. Furthermore, when administered orally in a high grade renal cell carcinoma xenograft model, the bioavailable CRM1 inhibitor KPT-251 significantly inhibited tumor growth in vivo with the expected on target effects and no obvious toxicity. CONCLUSIONS: The CRM1 inhibitor protein family is a novel therapeutic target for renal cell carcinoma that deserves further intensive investigation for this and other urological malignancies.


Asunto(s)
Acrilatos/farmacología , Antineoplásicos/farmacología , Carcinoma de Células Renales/tratamiento farmacológico , Carioferinas/efectos de los fármacos , Neoplasias Renales/tratamiento farmacológico , Terapia Molecular Dirigida/métodos , Receptores Citoplasmáticos y Nucleares/efectos de los fármacos , Triazoles/farmacología , Transporte Activo de Núcleo Celular/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/mortalidad , Línea Celular Tumoral/efectos de los fármacos , Modelos Animales de Enfermedad , Citometría de Flujo , Humanos , Immunoblotting , Inmunohistoquímica , Carioferinas/genética , Neoplasias Renales/genética , Neoplasias Renales/mortalidad , Masculino , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Distribución Aleatoria , Receptores Citoplasmáticos y Nucleares/genética , Sensibilidad y Especificidad , Tasa de Supervivencia , Carga Tumoral/efectos de los fármacos , Proteína Exportina 1
17.
Front Zool ; 10: 34, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23767809

RESUMEN

INTRODUCTION: The PCR-based analysis of homologous genes has become one of the most powerful approaches for species detection and identification, particularly with the recent availability of Next Generation Sequencing platforms (NGS) making it possible to identify species composition from a broad range of environmental samples. Identifying species from these samples relies on the ability to match sequences with reference barcodes for taxonomic identification. Unfortunately, most studies of environmental samples have targeted ribosomal markers, despite the fact that the mitochondrial Cytochrome c Oxidase subunit I gene (COI) is by far the most widely available sequence region in public reference libraries. This is largely because the available versatile ("universal") COI primers target the 658 barcoding region, whose size is considered too large for many NGS applications. Moreover, traditional barcoding primers are known to be poorly conserved across some taxonomic groups. RESULTS: We first design a new PCR primer within the highly variable mitochondrial COI region, the "mlCOIintF" primer. We then show that this newly designed forward primer combined with the "jgHCO2198" reverse primer to target a 313 bp fragment performs well across metazoan diversity, with higher success rates than versatile primer sets traditionally used for DNA barcoding (i.e. LCO1490/HCO2198). Finally, we demonstrate how the shorter COI fragment coupled with an efficient bioinformatics pipeline can be used to characterize species diversity from environmental samples by pyrosequencing. We examine the gut contents of three species of planktivorous and benthivorous coral reef fish (family: Apogonidae and Holocentridae). After the removal of dubious COI sequences, we obtained a total of 334 prey Operational Taxonomic Units (OTUs) belonging to 14 phyla from 16 fish guts. Of these, 52.5% matched a reference barcode (>98% sequence similarity) and an additional 32% could be assigned to a higher taxonomic level using Bayesian assignment. CONCLUSIONS: The molecular analysis of gut contents targeting the 313 COI fragment using the newly designed mlCOIintF primer in combination with the jgHCO2198 primer offers enormous promise for metazoan metabarcoding studies. We believe that this primer set will be a valuable asset for a range of applications from large-scale biodiversity assessments to food web studies.

18.
Oncogene ; 42(9): 693-707, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36596844

RESUMEN

Castration-resistant prostate cancer (CRPC) is the main driving force of mortality in prostate cancer patients. Among the parameters contributing to the progression of CRPC and treatment failure, elevation of the steroidogenic enzyme AKR1C3 and androgen receptor variant 7 (AR-V7) are frequently reported. The AKR1C3/AR-V7 complex has been recognized as a major driver for drug resistance in advanced prostate cancer. Herein we report that the level of AKR1C3 is reciprocally regulated by the full-length androgen receptor (AR-FL) through binding to the distal enhancer region of the AKR1C3 gene. A novel function of PTUPB in AKR1C3 inhibition was discovered and PTUPB showed more effectiveness than indomethacin and celecoxib in suppressing AKR1C3 activity and CRPC cell growth. PTUPB synergizes with enzalutamide treatment in tumor suppression and gene signature regulation. Combination treatments with PTUPB and enzalutamide provide benefits by blocking AR/AR-V7 signaling, which inhibits the growth of castration relapsed VCaP xenograft tumors and patient-derived xenograft organoids. Targeting of the ARK1C3/AR/AR-V7 axis with PTUPB and enzalutamide may overcome drug resistance to AR signaling inhibitors in advanced prostate cancer.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Receptores Androgénicos , Masculino , Humanos , Receptores Androgénicos/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Nitrilos/uso terapéutico , Antagonistas de Receptores Androgénicos , Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas
19.
J Immunother Cancer ; 11(5)2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37147019

RESUMEN

BACKGROUND: Emerging data suggest that patients with enzalutamide-treated prostate cancer with increased programmed death-ligand 1 (PD-L1) expression may benefit from anti-PD-L1 treatment. Unfortunately, the Phase III IMbassador250 clinical trial revealed that the combination of atezolizumab (a PD-L1 inhibitor) and enzalutamide failed to extend overall survival in patients with castration-resistant prostate cancer (CRPC). However, the mechanisms underlying treatment failure remain unknown. METHODS: Human CRPC C4-2B cells and murine Myc-CaP cells were chronically exposed to increasing concentrations of enzalutamide and the cells resistant to enzalutamide were referred to as C4-2B MDVR and Myc-CaP MDVR, respectively. The mechanisms of action in drug-resistant prostate cancer cells were determined using RNA sequencing analyses, RNA interference, real-time PCR, western blotting, and co-culturing technologies. Myc-CaP and Myc-CaP MDVR tumors were established in syngeneic FVB mice, and tumor-infiltrating leukocytes were isolated after enzalutamide treatment. The stained immune cells were determined by flow cytometry, and the data were analyzed using FlowJo. RESULTS: Immune-related signaling pathways (interferon alpha/gamma response, inflammatory response, and cell chemotaxis) were suppressed in human enzalutamide-resistant prostate cancer cells. PD-L1 was overexpressed and negatively regulated by androgen receptor signaling in resistant cells and patient with CRPC cohorts. Enzalutamide treatment decreased CD8+ T-cell numbers but increased monocytic myeloid-derived suppressor cell (M-MDSC) populations and PD-L1 expression within murine Myc-CaP tumors. Similarly, chemotaxis and immune response-regulating signaling pathways were suppressed, and PD-L1 expression was also increased using enzalutamide-resistant Myc-CaP MDVR cells. Notably, MDSC populations were significantly increased in Myc-CaP MDVR orthotopic tumors compared with those in Myc-CaP parental tumors. Co-culturing bone marrow cells with Myc-CaP MDVR cells significantly promoted MDSC differentiation and shifted towards M2 macrophage skewing. CONCLUSIONS: Our study suggests that immunosuppressive signaling can be promoted directly by enzalutamide-resistant prostate cancer cells and may be a potential means by which the efficacy of immune checkpoint inhibitors in enzalutamide-resistant prostate cancer is diminished.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Receptores Androgénicos , Animales , Humanos , Masculino , Ratones , Resistencia a Antineoplásicos , Inmunosupresores/uso terapéutico , Feniltiohidantoína/farmacología , Feniltiohidantoína/uso terapéutico , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/patología , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Microambiente Tumoral
20.
Int J Cancer ; 130(12): 2791-800, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-21732340

RESUMEN

Kidney cancer often diagnosed at late stages when treatment options are severely limited. Thus, greater understanding of tumor metabolism leading ultimately to novel approaches to diagnosis is needed. Our laboratory has been utilizing metabolomics to evaluate compounds appearing in kidney cancer patients' biofluids at concentrations different from control patients. Here, we collected urine samples from kidney cancer patients and analyzed them by chromatography coupled to mass spectrometry. Once normalized to control for urinary concentration, samples were analyzed by two independent laboratories. After technical validation, we now show differential urinary concentrations of several acylcarnitines as a function of both cancer status and kidney cancer grade, with most acylcarnitines being increased in the urine of cancer patients and in those patients with high cancer grades. This finding was validated in a mouse xenograft model of human kidney cancer. Biological validation shows carbon chain length-dependent effects of the acylcarnitines on cytotoxicity in vitro, and higher chain length acylcarnitines demonstrated inhibitory effects on NF-κB activation, suggesting an immune modulatory effect of these compounds. Thus, acylcarnitines in the kidney cancer urine may reflect alterations in metabolism, cell component synthesis and/or immune surveillance, and may help explain the profound chemotherapy resistance seen with this cancer. This study shows for the first time the value of a novel class of metabolites which may lead to new therapeutic approaches for cancer and may prove useful in cancer biomarker studies. Furthermore, these findings open up a new area of investigation into the metabolic basis of kidney cancer.


Asunto(s)
Carnitina/análogos & derivados , Neoplasias Renales/orina , FN-kappa B/biosíntesis , Animales , Biomarcadores de Tumor/orina , Carnitina/biosíntesis , Carnitina/metabolismo , Carnitina/orina , Línea Celular Tumoral , Humanos , Riñón , Neoplasias Renales/patología , Metabolómica , Ratones , FN-kappa B/metabolismo , Clasificación del Tumor , Trasplante de Neoplasias , Trasplante Heterólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA