Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 20(22): e2309009, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38100243

RESUMEN

Using seeds to control the crystallization of perovskite film is an effective strategy for achieving high-efficiency perovskite solar cells (PSCs). Owing to their excellent environmental stability brought by their long alkyl chain, n-butylammonium (BA) cations are widely used for fabricating efficient and stable PSCs. However, BA-based 2D perovskite is seldom been investigated as a seed. Here, BA2PbI4 is employed to regulate the crystallization of PbI2, acting as nucleation centers. As a result, porous PbI2 film with high crystallinity is obtained, which allows the realization of perovskite film with preferential crystal orientations of (001) and large grain size of over 2 µm. The corresponding PSC achieves a high power conversion efficiency (PCE) of 24.30% and exhibits satisfactory stability, retaining 91.70% of the initial PCE after 300 h of thermal aging at 85°C.

2.
J Ultrasound Med ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39177413

RESUMEN

Spondyloarthritis (SpA) is a prevalent genetic disorder that significantly impairs mobility, particularly in the spine, sacroiliac, and peripheral joints. Recent evidence highlights early involvement of the sternoclavicular joint in SpA, which may serve as an initial indicator. Diagnosis often relies on CT and MRI, neglecting ultrasound's potential in identifying SpA-related sternoclavicular arthritis. This review focuses on the joint's anatomy, exploring ultrasound's diagnostic and therapeutic role in SpA-related sternoclavicular arthritis, aiming to provide insights for future ultrasound applications in SpA management.

3.
Angew Chem Int Ed Engl ; : e202414118, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39160140

RESUMEN

Trap-assisted non-radiative recombination losses and moisture-induced degradation significantly impede the development of highly efficient and stable inverted (p-i-n) perovskite solar cells (PSCs), which require high-quality perovskite bulk. In this research, we mitigate these challenges by integrating thermally stable perovskite layers with Lewis base covalent organic frameworks (COFs). The ordered pore structure and surface binding groups of COFs facilitate cyclic, multi-site chelation with undercoordinated lead ions, enhancing the perovskite quality across both its bulk and grain boundaries. This process not only reduces defects but also promotes improved energy alignment through n-type doping at the surface. The inclusion of COF dopants in p-i-n devices achieves power conversion efficiencies (PCEs) of 25.64 % (certified 24.94 %) for a 0.0748-cm2 device and 23.49 % for a 1-cm2 device. Remarkably, these devices retain 81 % of their initial PCE after 978 hours of accelerated aging at 85°C, demonstrating remarkable durability. Additionally, COF-doped devices demonstrate excellent stability under illumination and in moist conditions, even without encapsulation.

4.
Angew Chem Int Ed Engl ; 62(41): e202311865, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37615050

RESUMEN

Passivating the interfaces between the perovskite and charge transport layers is crucial for enhancing the power conversion efficiency (PCE) and stability in perovskite solar cells (PSCs). Here we report a dual-interface engineering approach to improving the performance of FA0.85 MA0.15 Pb(I0.95 Br0.05 )3 -based PSCs by incorporating Ti3 C2 Clx Nano-MXene and o-TB-GDY nanographdiyne (NanoGDY) into the electron transport layer (ETL)/perovskite and perovskite/ hole transport layer (HTL) interfaces, respectively. The dual-interface passivation simultaneously suppresses non-radiative recombination and promotes carrier extraction by forming the Pb-Cl chemical bond and strong coordination of π-electron conjugation with undercoordinated Pb defects. The resulting perovskite film has an ultralong carrier lifetime exceeding 10 µs and an enlarged crystal size exceeding 2.5 µm. A maximum PCE of 24.86 % is realized, with an open-circuit voltage of 1.20 V. Unencapsulated cells retain 92 % of their initial efficiency after 1464 hours in ambient air and 80 % after 1002 hours of thermal stability test at 85 °C.

5.
Eur J Pharmacol ; 960: 176141, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37866741

RESUMEN

Neuroinflammation mediated by microglia made a significant contribution in the pathophysiology of epilepsy. Icariin (ICA), a bioactive ingredient isolated from Epimedium, has been shown to present both antioxidant and anti-inflammatory properties. This study was to explore the potential therapeutic effects of icariin on mouse pilocarpine model of epilepsy and its underlying mechanisms in vivo and in vitro. To this end, we firstly measured the serum concentrations of the proinflammatory cytokines IL-1ß and IL-6 from patients with temporal lobe epilepsy and found that patients with a higher seizure frequency showed correspondingly higher inflammatory reaction. Mouse pharmacokinetic study, transmembrane transportation assay, and cell viability assay collectively demonstrated that ICA was able to cross the blood-brain barrier and has good biocompatibility. The acute and chronic epilepsy models were next established in a pilocarpine mouse model of acquired epilepsy. Icariin has been identified that it could cross the blood-brain barrier and enter the hippocampus to exhibit therapeutic effects. ICA treatment dramatically promoted microglial polarization to the M2 phenotype in epilepsy mice both in the acute and chronic phases. Reduced release of M1-associated proinflammatory factors, such as IL-1ß and IL-6, corroborates the altered glial cell polarization. Furthermore, ICA alleviated seizure intensity and mortality in acute phase epileptic mice. Models in the chronic group also showed improved general condition, cognition ability, and memory function after ICA treatment. Taken together, our research strongly suggested that icariin has the potential to treat epilepsy via inhibiting neuroinflammation by promoting microglial polarization to the M2 phenotype.


Asunto(s)
Epilepsia , Pilocarpina , Humanos , Ratones , Animales , Pilocarpina/farmacología , Interleucina-6 , Enfermedades Neuroinflamatorias , Epilepsia/inducido químicamente , Epilepsia/tratamiento farmacológico , Convulsiones/tratamiento farmacológico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Microglía , Modelos Animales de Enfermedad
6.
ACS Appl Mater Interfaces ; 15(18): 22684-22691, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37099287

RESUMEN

Unidirectional and long-distance liquid transport is critically important to a range of practical applications, e.g., water harvesting, microfluidics, and chemical reactions. Great efforts have been made on liquid manipulation; most of which, however, are limited in the air environment. It is still a great challenge to achieve unidirectional and long-distance oil transport in an aqueous environment. Herein, we have successfully fabricated an underwater superoleophilic two-dimensional surface (USTS) with asymmetric oleophobic barriers to arbitrarily manipulate oil in aqueous medium. The behavior of oil on USTS was carefully investigated, of which the unidirectional spreading capability was originated from the anisotropic spreading resistance resulted from the asymmetric oleophobic barriers. Accordingly, an underwater oil/water separation device has been developed, which can achieve continuous and efficient oil/water separation and further prevent the secondary pollution caused by oil volatilization.

7.
iScience ; 26(9): 107661, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37680483

RESUMEN

The multi-scale modeling of lithium-ion battery (LIB) is difficult and necessary due to its complexity. However, it is difficult to capture the aging behavior of batteries, and the coupling mechanism between multiple scales is still incomplete. In this paper, a simplified electrochemical model (SEM) and a kinetic Monte Carlo (KMC)-based solid electrolyte interphase (SEI) film growth model are used to study the multi-scale characteristics of LIBs. The single-particle SEM (SP-SEM) is described for macro scale, and a simple and self-consistent multi-particle SEM (MP-SEM) is developed. Then, the KMC-based SEI model is established for micro-scale molecular evolution. And, the two models are coupled to construct the full-cycle multi-scale model. After modeling, validation is performed by using a commercial 18650-type LIB. Finally, the effect of parameters on the SEI model is studied, including qualitative trend analysis and quantitative sensitivity analysis. The growth of SEI film with different particle sizes is studied by MP-SEM coupling simulation.

8.
Biomedicines ; 10(12)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36552019

RESUMEN

Prostate cancer is the most common cancer and one of the leading causes of cancer mortality in males. Androgen-deprivation therapy (ADT) is an effective strategy to inhibit tumour growth at early stages. However, 10~50% of cases are estimated to progress to metastatic castration-resistant prostate cancer (mCRPC) which currently lacks effective treatments. Clinically, salvage treatment measures, such as endocrine therapy and chemotherapy, are mostly used for advanced prostate cancer, but their clinical outcomes are not ideal. When the existing clinical therapeutic methods can no longer inhibit the development of advanced prostate cancer, human adenovirus (HAdV)-based gene therapy and viral therapy present promising effects. Pre-clinical studies have shown its powerful oncolytic effect, and clinical studies are ongoing to further verify its effect and safety in prostate cancer treatment. Targeting the prostate by HAdV alone or in combination with radiotherapy and chemotherapy sheds light on patients with castration-resistant and advanced prostate cancer. This review summarizes the advantages of oncolytic virus-mediated cancer therapy, strategies of HAdV modification, and existing preclinical and clinical investigations of HAdV-mediated gene therapy to further evaluate the potential of oncolytic adenovirus in prostate cancer treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA