Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 19(33): 22375-22384, 2017 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-28805861

RESUMEN

We obtained the electronic spectra of various methylated xanthine compounds including caffeine in a supersonic jet by resonant two-photon ionization spectroscopy. The methyl group in the tested methylated xanthine compounds has a distinct, site-dependent effect on the electronic spectrum. Methylation at the N3 position causes a significant red shift of the ππ* state, whereas methylation at the N1 position has only minimal effects on the electronic spectrum. The notably broad spectra of theobromine and caffeine result from methyl substitution at the N7 position, which causes a large displacement between the potential energy surfaces of the S0 and S1 states, and a strong vibronic coupling. We also investigated the internal rotation of the methyl group and its effect on the electronic spectrum of the methylated xanthine compounds. We found that the barrier height for the torsional motion in the ground state is significantly affected by a carbonyl or methyl group that lies close to the methyl group of interest. In contrast, the torsional barrier in the excited state is governed by the hyperconjugation interaction in the lowest unoccupied molecular orbital. The agreement between the experimental and simulated spectra of torsional vibronic bands suggested that the low frequency torsional vibrations arising from the tunneling splitting and the coupling between the torsional and molecular motions give theobromine and theophylline the multiplet nature of their origin bands. This study provides a new level of understanding for the methyl substitution effects on the electronically excited states of xanthine compounds, which may very well be applicable to many other methyl substituted biomolecules including DNAs and proteins.


Asunto(s)
Xantina/química , Electrones , Metilación , Modelos Moleculares , Teoría Cuántica , Termodinámica , Vibración
2.
J Chem Phys ; 128(13): 134310, 2008 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-18397067

RESUMEN

We investigated electronically excited states of caffeine and its 1:1 complex with water by using resonant two-photon ionization (R2PI) and UV-UV hole-burning techniques. Strong vibronic coupling between a pair of close-lying pi-pi* and n-pi* transitions is proposed to be responsible for the broad spectral feature observed. By comparing the experimental results with those of theoretical calculations, both the O-bonded and N-bonded forms were suggested to be initially produced for the 1:1 complex. The electronic transitions of the O-bonded complex were blueshifted in the R2PI spectrum. For the N-bonded complex, the excited state undergoes an ultrafast decay process, followed by dissociation on a repulsive potential energy surface, which gives rise to a characteristically anomalous cluster distribution in nanosecond experiments.


Asunto(s)
Cafeína/química , Cafeína/efectos de la radiación , Modelos Químicos , Modelos Moleculares , Agua/química , Simulación por Computador , Conformación Molecular/efectos de la radiación , Fotones , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA