Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Virol ; 98(5): e0009324, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38591899

RESUMEN

Feline parvovirus (FPV) infection is highly fatal in felines. NS1, which is a key nonstructural protein of FPV, can inhibit host innate immunity and promote viral replication, which is the main reason for the severe pathogenicity of FPV. However, the mechanism by which the NS1 protein disrupts host immunity and regulates viral replication is still unclear. Here, we identified an FPV M1 strain that is regulated by the NS1 protein and has more pronounced suppression of innate immunity, resulting in robust replication. We found that the neutralization titer of the FPV M1 strain was significantly lower than that of the other strains. Moreover, FPV M1 had powerful replication ability, and the FPV M1-NS1 protein had heightened efficacy in repressing interferon-stimulated genes (ISGs) expression. Subsequently, we constructed an FPV reverse genetic system, which confirmed that the N588 residue of FPV M1-NS1 protein is a key amino acid that bolsters viral proliferation. Recombinant virus containing N588 also had stronger ability to inhibit ISGs, and lower ISGs levels promoted viral replication and reduced the neutralization titer of the positive control serum. Finally, we confirmed that the difference in viral replication was abolished in type I IFN receptor knockout cell lines. In conclusion, our results demonstrate that the N588 residue of the NS1 protein is a critical amino acid that promotes viral proliferation by increasing the inhibition of ISGs expression. These insights provide a reference for studying the relationship between parvovirus-mediated inhibition of host innate immunity and viral replication while facilitating improved FPV vaccine production.IMPORTANCEFPV infection is a viral infectious disease with the highest mortality rate in felines. A universal feature of parvovirus is its ability to inhibit host innate immunity, and its ability to suppress innate immunity is mainly accomplished by the NS1 protein. In the present study, FPV was used as a viral model to explore the mechanism by which the NS1 protein inhibits innate immunity and regulates viral replication. Studies have shown that the FPV-NS1 protein containing the N588 residue strongly inhibits the expression of host ISGs, thereby increasing the viral proliferation titer. In addition, the presence of the N588 residue can increase the proliferation titer of the strain 5- to 10-fold without affecting its virulence and immunogenicity. In conclusion, our findings provide new insights and guidance for studying the mechanisms by which parvoviruses suppress innate immunity and for developing high-yielding FPV vaccines.


Asunto(s)
Virus de la Panleucopenia Felina , Proteínas no Estructurales Virales , Replicación Viral , Animales , Gatos , Línea Celular , Virus de la Panleucopenia Felina/genética , Virus de la Panleucopenia Felina/inmunología , Inmunidad Innata , Mutación , Infecciones por Parvoviridae/virología , Infecciones por Parvoviridae/inmunología , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/inmunología
2.
J Virol ; 98(1): e0123923, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38099687

RESUMEN

Coronaviruses (CoVs) pose a major threat to human and animal health worldwide, which complete viral replication by hijacking host factors. Identifying host factors essential for the viral life cycle can deepen our understanding of the mechanisms of virus-host interactions. Based on our previous genome-wide CRISPR screen of α-CoV transmissible gastroenteritis virus (TGEV), we identified the host factor dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A), but not DYRK1B, as a critical factor in TGEV replication. Rescue assays and kinase inhibitor experiments revealed that the effect of DYRK1A on viral replication is independent of its kinase activity. Nuclear localization signal modification experiments showed that nuclear DYRK1A facilitated virus replication. Furthermore, DYRK1A knockout significantly downregulated the expression of the TGEV receptor aminopeptidase N (ANPEP) and inhibited viral entry. Notably, we also demonstrated that DYRK1A is essential for the early stage of TGEV replication. Transmission electron microscopy results indicated that DYRK1A contributes to the formation of double-membrane vesicles in a kinase-independent manner. Finally, we validated that DYRK1A is also a proviral factor for mouse hepatitis virus, porcine deltacoronavirus, and porcine sapelovirus. In conclusion, our work demonstrated that DYRK1A is an essential host factor for the replication of multiple viruses, providing new insights into the mechanism of virus-host interactions and facilitating the development of new broad-spectrum antiviral drugs.IMPORTANCECoronaviruses, like other positive-sense RNA viruses, can remodel the host membrane to form double-membrane vesicles (DMVs) as their replication organelles. Currently, host factors involved in DMV formation are not well defined. In this study, we used transmissible gastroenteritis virus (TGEV) as a virus model to investigate the regulatory mechanism of dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) on coronavirus. Results showed that DYRK1A significantly inhibited TGEV replication in a kinase-independent manner. DYRK1A knockout (KO) can regulate the expression of receptor aminopeptidase N (ANPEP) and endocytic-related genes to inhibit virus entry. More importantly, our results revealed that DYRK1A KO notably inhibited the formation of DMV to regulate the virus replication. Further data proved that DYRK1A is also essential in the replication of mouse hepatitis virus, porcine deltacoronavirus, and porcine sapelovirus. Taken together, our findings demonstrated that DYRK1A is a conserved factor for positive-sense RNA viruses and provided new insights into its transcriptional regulation activity, revealing its potential as a candidate target for therapeutic design.


Asunto(s)
Infecciones por Coronavirus , Coronavirus , Quinasas DyrK , Animales , Humanos , Ratones , Antígenos CD13/genética , Coronavirus/clasificación , Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/virología , Deltacoronavirus , Virus de la Hepatitis Murina/fisiología , Porcinos , Virus de la Gastroenteritis Transmisible/genética , Tirosina , Replicación Viral/fisiología , Quinasas DyrK/metabolismo
3.
J Gen Virol ; 105(1)2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38175184

RESUMEN

Feline calicivirus (FCV) is considered one of the major pathogens of cats worldwide and causes upper respiratory tract disease in all cats. In some cats, infection is by a highly virulent strain of FCV (vs.-FCV), which can cause severe and fatal systemic disease symptoms. At present, few antiviral drugs are approved for clinical treatment against FCV. Therefore, there is an imminent need for effective FCV antiviral agents. Here, we used observed a cytopathic effect (CPE) assay to screen 1746 traditional Chinese medicine monomer compounds and found one that can effectively inhibit FCV replication, namely, handelin, with an effective concentration (EC50) value of approximately 2.5 µM. Further study showed that handelin inhibits FCV replication via interference with heat shock protein 70 (HSP70), which is a crucial host factor and plays a positive role in regulating viral replication. Moreover, handelin and HSP70 inhibitors have broad-spectrum antiviral activity. These findings indicate that handelin is a potential candidate for the treatment of FCV infection and that HSP70 may be an important drug target.


Asunto(s)
Infecciones por Caliciviridae , Terpenos , Gatos , Animales , Evaluación Preclínica de Medicamentos , Proteínas HSP70 de Choque Térmico , Infecciones por Caliciviridae/tratamiento farmacológico , Infecciones por Caliciviridae/veterinaria
4.
BMC Vet Res ; 20(1): 80, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443948

RESUMEN

BACKGROUND: Feline calicivirus (FCV) infection causes severe upper respiratory disease in cats, but there are no effective vaccines available for preventing FCV infection. Subunit vaccines have the advantages of safety, low cost and excellent immunogenicity, but no FCV subunit vaccine is currently available. The CDE protein is the dominant neutralizing epitope region of the main antigenic structural protein of FCV, VP1. Therefore, this study evaluated the effectiveness of the CDE region as a truncated FCV VP1 protein in preventing FCV infection to provide a strategy for developing potential FCV subunit vaccines. RESULTS: Through the prediction of FCV VP1 epitopes, we found that the E region is the dominant neutralizing epitope region. By analysing the spatial structure of VP1 protein, 13 amino acid sites in the CD and E regions were found to form hydrogen bonding interactions. The results show the presence of these interaction forces supports the E region, helping improve the stability and expression level of the soluble E protein. Therefore, we selected the CDE protein as the immunogen for the immunization of felines. After immunization with the CDE protein, we found significant stimulation of IgG, IgA and neutralizing antibody production in serum and swab samples, and the cytokine TNF-α levels and the numbers of CD4+ T lymphocytes were increased. Moreover, a viral challenge trial indicated that the protection generated by the CDE subunit vaccine significantly reduced the incidence of disease in animals. CONCLUSIONS: For the first time, we studied the efficacy of the CDE protein, which is the dominant neutralizing epitope region of the FCV VP1 protein, in preventing FCV infection. We revealed that the CDE protein can significantly activate humoral, mucosal and cellular immunity, and the resulting protective effect can significantly reduce the incidence of animal disease. The CDE region of the FCV capsid is easy to produce and has high stability and excellent immunogenicity, which makes it a candidate for low-cost vaccines.


Asunto(s)
Calicivirus Felino , Animales , Gatos , Vacunas de Subunidad , Aminoácidos , Citocinas , Epítopos
5.
J Virol ; 96(17): e0090722, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36000844

RESUMEN

The rapid global emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused serious health problems, highlighting the urgent need for antiviral drugs. The viral main protease (Mpro) plays an important role in viral replication and thus remains the target of choice for the prevention or treatment of several viral diseases due to high sequence and structural conservation. Prolonged use of viral protease inhibitors can lead to the development of mutants resistant to those inhibitors and to many of the available antiviral drugs. Here, we used feline infectious peritonitis virus (FIPV) as a model to investigate its development of resistance under pressure from the Mpro inhibitor GC376. Passage of wild-type (WT) FIPV in the presence of GC376 selected for a mutation in the nsp12 region where Mpro cleaves the substrate between nsp12 and nsp13. This mutation confers up to 3-fold resistance to GC376 and nirmatrelvir, as determined by EC50 assay. In vitro biochemical and cellular experiments confirmed that FIPV adapts to the stress of GC376 by mutating the nsp12 and nsp13 hydrolysis site to facilitate cleavage by Mpro and release to mediate replication and transcription. Finally, we demonstrate that GC376 cannot treat FIP-resistant mutants that cause FIP in animals. Taken together, these results suggest that Mpro affects the replication of coronaviruses (CoVs) and the drug resistance to GC376 by regulating the amount of RdRp from a distant site. These findings provide further support for the use of an antiviral drug combination as a broad-spectrum therapy to protect against contemporary and emerging CoVs. IMPORTANCE CoVs cause serious human infections, and antiviral drugs are currently approved to treat these infections. The development of protease-targeting therapeutics for CoV infection is hindered by resistance mutations. Therefore, we should pay attention to its resistance to antiviral drugs. Here, we identified possible mutations that lead to relapse after clinical treatment of FIP. One amino acid substitution in the nsp12 polymerase at the Mpro cleavage site provided low-level resistance to GC376 after selection exposure to the GC376 parental nucleoside. Resistance mutations enhanced FIPV viral fitness in vitro and attenuated the therapeutic effect of GC376 in an animal model of FIPV infection. Our research explains the evolutionary characteristics of coronaviruses under antiviral drugs, which is helpful for a more comprehensive understanding of the molecular basis of virus resistance and provides important basic data for the effective prevention and control of CoVs.


Asunto(s)
Antivirales , Proteasas 3C de Coronavirus , Coronavirus Felino , Farmacorresistencia Viral , Mutación , Inhibidores de Proteasas , Animales , Antivirales/farmacología , Gatos/virología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/genética , Proteasas 3C de Coronavirus/metabolismo , Coronavirus Felino/efectos de los fármacos , Coronavirus Felino/enzimología , Coronavirus Felino/genética , Farmacorresistencia Viral/genética , Inhibidores de Proteasas/farmacología
6.
FASEB J ; 35(3): e21350, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33629764

RESUMEN

African swine fever (ASF) is an acute, hemorrhagic, and highly contagious disease caused by African swine fever virus (ASFV). The mortality rate of acute infection up to 100% have posed an unprecedented challenge of the swine industry. Currently no commercial antiviral drug is available for the control and treatment of ASFV. The structural resolution of ASFV virions reveals the details of ASFV morphogenesis, providing a new perspective for the research and promotion of the development of ASFV vaccines. Although the architecture of ASFV have been solved via cryo-EM, the structural details of four of the five viral layers remain unclear (except the outer capsid). In this study, we resolved the crystal structure of the ASFV core shell protein p15. The secondary structural elements of a protomer include four α-helix structures and six antiparallel ß-strands. Further analysis revealed that ASFV p15 forms disulfide-linked trimers between the Cys9 from one protomer and Cys30 from other protomer. Additionally, the nucleic acid-binding property was characterized by electrophoretic mobility shift assay. Two critical amino acid Lys10 and Lys39 have been identified which is essential to the nucleic acid-binding affinity of ASFV p15. Together, these findings may provide new insight into antiviral drug development.


Asunto(s)
Virus de la Fiebre Porcina Africana/fisiología , Proteínas Virales/química , Virus de la Fiebre Porcina Africana/química , Cristalización , ADN/metabolismo , Multimerización de Proteína , Proteínas Virales/fisiología , Ensamble de Virus
7.
Vet Microbiol ; 298: 110276, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39442428

RESUMEN

Feline herpesvirus 1 (FHV-1) is a major pathogen responsible for respiratory, ocular and nervous system symptoms in felines. FHV-1 can remain latenct in ganglia and is difficult to eliminate completely with drug treatment. Currently, commercially FHV-1 vaccines are not sufficiently effective and provide only limited durations of protection. To enhance vaccine efficacy and reduce latent virus in tissues, two gene deletion mutants of FHV-1 conveyed excellent proliferation ability, genetic stability and attenuated FHV-1 virulence were constructed by CRISPR/Cas9-mediated homologous recombination, designated as FHV-△US3 and FHV-△UL50. Recombinant FHV-1 induce stronger cellular and humoral immune responses, as well as better protective effects than those of commercial vaccines. Notably, FHV-△US3 and FHV-△UL50 reveal neuro-attenuated, as viral residue in the trigeminal ganglia are significantly reduced. The knockout of the UL50 gene in FHV-1 has not been previously reported. In this study, we aimed to evaluate the safety and immunogenicity of FHV-△UL50, highlighting its potential as a novel neuroattenuated vaccine candidate.

8.
Vet Microbiol ; 290: 109978, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38185071

RESUMEN

Recently, herpesvirus viral vectors that stimulate strong humoral and cellular immunity have been demonstrated to be the most promising platforms for the development of multivalent vaccines, because they contain various nonessential genes and exhibit long-life latency characteristics. Previously, we showed that the feline herpesvirus-1 (FHV-1) mutant WH2020-ΔTK/gI/gE, which was safe for felines and provided efficacious protection against FHV-1 challenge, can be used as a vaccine vector. Moreover, previous studies have shown that the major neutralizing epitope VP2 protein of feline parvovirus (FPV) can elicit high levels of neutralizing antibodies. Therefore, to develop a bivalent vaccine against FPV and FHV-1, we first generated a novel recombinant virus by CRISPR/Cas9-mediated homologous recombination, WH2020-ΔTK/gI/gE-VP2, which expresses the VP2 protein of FPV. The growth characteristics of WH2020-ΔTK/gI/gE-VP2 were similar to those of WH2020-ΔTK/gI/gE, and WH2020-ΔTK/gI/gE-VP2 was stable for at least 30 generations in CRFK cells. As expected, we found that the felines immunized with WH2020-ΔTK/gI/gE-VP2 produced FPV-neutralizing antibody titers (27.5) above the positive cutoff (26) on day 14 after single inoculation. More importantly, recombinant WH2020-ΔTK/gI/gE-VP2 exhibited severely impaired pathogenicity in inoculated and cohabiting cats. The kittens immunized with WH2020-ΔTK/gI/gE and WH2020-ΔTK/gI/gE-VP2 produced similar levels of FHV-specific antibodies and IFN-ß. Furthermore, felines immunized with WH2020-ΔTK/gI/gE-VP2 were protected against challenge with FPV and FHV-1. These data showed that WH2020-ΔTK/gI/gE-VP2 appears to be a potentially safe, effective, and economical bivalent vaccine against FPV and FHV-1 and that WH2020-ΔTK/gI/gE can be used as a viral vector to develop feline multivalent vaccines.


Asunto(s)
Varicellovirus , Vacunas Virales , Animales , Gatos , Femenino , Virus de la Panleucopenia Felina/genética , Varicellovirus/genética , Anticuerpos Neutralizantes , Vacunas Combinadas , Anticuerpos Antivirales
9.
J Proteomics ; : 105338, 2024 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-39454824

RESUMEN

Feline infectious peritonitis (FIP) is a fatal feline disease. At present, the reference standard for FIP diagnosis is immunohistochemistry (IHC) of organs, but this method involves high time-related costs, invasive sampling procedures and professional requirements. Serological detection is a common auxiliary method for diagnosing diseases. As a result, we assessed the changes in the serum proteome of FIP patients with the aim of identifying novel specific serum biomarkers that could aid in the clinical diagnosis of FIP. Pre- and postinfection groups were compared and 92 differentially expressed proteins (DEPs) were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of the DEPs revealed that the enriched GO terms and KEGG pathways among the DEPs were immune activation, peptidase regulator activity and the complement and coagulation cascade pathways. The level of peptidase regulator interalpha-trypsin inhibitor heavy chain 4 (ITIH4) in cat serum was significantly correlated with FIP. The areas under the ROC curve (AUCs) of full-length ITIH4 (f-ITIH4) and cleaved ITIH4 (c-ITIH4) expression were 0.922 and 1.000, respectively, which allowed the discrimination of FIP cats from healthy cats. These results suggest that ITIH4 may be a potential serum biomarker for detecting early FIP. SIGNIFICANCE: FIP causes fatal disease in cats of almost all ages, and there is currently no effective vaccine or treatment for FIP. Therefore, early diagnosis is extremely important for disease prevention and control. The results of the model and clinical samples revealed that ITIH4 was significantly increased in the serum of FIP cats. This study is the first to propose ITIH4 as a diagnostic biomarker in cats with FIP and our results suggest that serum ITIH4 levels might identify cats with FIP during the early stage.

10.
Vet Microbiol ; 281: 109728, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37003192

RESUMEN

Feline herpesvirus-1 (FHV-1) is the aetiological agent of feline viral rhinotracheitis, which accounts for approximately 50 % of all viral upper respiratory diseases in cats. Commercially available modified live vaccines containing FHV-1 are generally safe and effective, but these FHV-1 vaccines retain full virulence genes and can establish latency and reactivate to cause infectious rhinotracheitis in vaccine recipients, raising safety concerns. To address this shortcoming, we constructed a novel TK/gI/gE -gene-deleted recombinant FHV-1 (WH2020-ΔTK/gI/gE) through CRISPR/Cas9-mediated homologous recombination. The growth kinetics of WH2020-ΔTK/gI/gE were slightly delayed compared to those of the parent strain WH2020. Recombinant FHV-1 had severely impaired pathogenicity in cats. Felines immunized with WH2020-ΔTK/gI/gE produced high levels of gB-specific antibodies, neutralizing antibodies and IFN-ß. Additionally, WH2020-ΔTK/gI/gE provided greater protection against challenge with FHV-1 field strain WH2020 than did the commercial modified live vaccine. After challenge, the cats vaccinated with WH2020-ΔTK/gI/gE showed significantly fewer clinical signs, pathological changes, viral shedding, and viral loads in the lung and trigeminal ganglia than those vaccinated with the commercial vaccine or unvaccinated. Our results suggest that WH2020-ΔTK/gI/gE is a promising candidate as a safer and more efficacious live FHV-1 vaccine, with a decreased risk of vaccine-related complications, and could inform the design of other herpesvirus vaccines.


Asunto(s)
Enfermedades de los Gatos , Infecciones por Herpesviridae , Varicellovirus , Vacunas Virales , Gatos , Animales , Sistemas CRISPR-Cas , Infecciones por Herpesviridae/prevención & control , Infecciones por Herpesviridae/veterinaria , Anticuerpos Neutralizantes/genética , Enfermedades de los Gatos/prevención & control
11.
Vet Microbiol ; 283: 109781, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37269714

RESUMEN

FIP is a fatal feline disease caused by FIPV. Two drugs (GS441524 and GC376) target FIPV and have good therapeutic effect when administered by subcutaneous injection. However, subcutaneous injection has limitations compared with oral administration. Additionally, the oral efficacy of the two drugs has not been determined. Here, GS441524 and GC376 were shown to efficiently inhibit FIPV-rQS79 (recombination virus with a full-length field type I FIPV and the spike gene replaced with type II FIPV) and FIPV II (commercially available type II FIPV 79-1146) at a noncytotoxic concentration in CRFK cells. Moreover, the effective oral dose was determined via the in vivo pharmacokinetics of GS441524 and GC376. We conducted animal trials in three dosing groups and found that while GS441524 can effectively reducing the mortality of FIP subjects at a range of doses, GC376 only reducing the mortality rate at high doses. Additionally, compared with GC376, oral GS441524 has better absorption, slower clearance and a slower rate of metabolism. Furthermore, there was no significant difference between the oral and subcutaneous pharmacokinetic parameters. Collectively, our study is the first to evaluate the efficacy of oral GS441524 and GC376 using a relevant animal model. We also verified the reliability of oral GS441524 and the potential of oral GC376 as a reference for rational clinical drug use. Furthermore, the pharmacokinetic data provide insights into and potential directions for the optimization of these drugs.


Asunto(s)
Coronavirus Felino , Peritonitis Infecciosa Felina , Gatos , Animales , Reproducibilidad de los Resultados , Administración Oral
12.
Mol Cancer Res ; 10(10): 1319-31, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22912335

RESUMEN

YWHAZ, also known as 14-3-3zeta, has been reportedly elevated in many human tumors, including non-small cell lung carcinoma (NSCLC) but little is known about its specific contribution to lung cancer malignancy. Through a combined array-based comparative genomic hybridization and expression microarray analysis, we identified YWHAZ as a potential metastasis enhancer in lung cancer. Ectopic expression of YWHAZ on low invasive cancer cells showed enhanced cell invasion, migration in vitro, and both the tumorigenic and metastatic potentials in vivo. Gene array analysis has indicated these changes associated with an elevation of pathways relevant to epithelial-mesenchymal transition (EMT), with an increase of cell protrusions and branchings. Conversely, knockdown of YWHAZ levels with siRNA or short hairpin RNA (shRNA) in invasive cancer cells led to a reversal of EMT. We observed that high levels of YWHAZ protein are capable of activating ß-catenin-mediated transcription by facilitating the accumulation of ß-catenin in cytosol and nucleus. Coimmunoprecipitation assays showed a decrease of ubiquitinated ß-catenin in presence of the interaction between YWHAZ and ß-catenin. This interaction resulted in disassociating ß-catenin from the binding of ß-TrCP leading to increase ß-catenin stability. Using enforced expression of dominant-negative and -positive ß-catenin mutants, we confirmed that S552 phosphorylation of ß-catenin increases the ß-catenin/YWHAZ complex formation, which is important in promoting cell invasiveness and the suppression of ubiquitnated ß-catenin. This is the first demonstration showing YWHAZ through its complex with ß-catenin in mediating lung cancer malignancy and ß-catenin protein stability.


Asunto(s)
Proteínas 14-3-3/metabolismo , Transición Epitelial-Mesenquimal , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Transducción de Señal , beta Catenina/metabolismo , Proteínas 14-3-3/genética , Animales , Línea Celular Tumoral , Movimiento Celular , Forma de la Célula , Humanos , Neoplasias Pulmonares/genética , Ratones , Ratones Endogámicos NOD , Invasividad Neoplásica , Metástasis de la Neoplasia , Neuronas/metabolismo , Neuronas/patología , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Proteolisis , Ubiquitina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA