Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Plant Cell ; 35(2): 852-873, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36427252

RESUMEN

CONSTANS (CO) is a master flowering-time regulator that integrates photoperiodic and circadian signals in Arabidopsis thaliana. CO is expressed in multiple tissues, including young leaves and seedling roots, but little is known about the roles and underlying mechanisms of CO in mediating physiological responses other than flowering. Here, we show that CO expression is responsive to jasmonate. CO negatively modulated jasmonate-imposed root-growth inhibition and anthocyanin accumulation. Seedlings from co mutants were more sensitive to jasmonate, whereas overexpression of CO resulted in plants with reduced sensitivity to jasmonate. Moreover, CO mediated the diurnal gating of several jasmonate-responsive genes under long-day conditions. We demonstrate that CO interacts with JASMONATE ZIM-DOMAIN (JAZ) repressors of jasmonate signaling. Genetic analyses indicated that CO functions in a CORONATINE INSENSITIVE1 (COI1)-dependent manner to modulate jasmonate responses. Furthermore, CO physically associated with the basic helix-loop-helix (bHLH) subgroup IIId transcription factors bHLH3 and bHLH17. CO acted cooperatively with bHLH17 in suppressing jasmonate signaling, but JAZ proteins interfered with their transcriptional functions and physical interaction. Collectively, our results reveal the crucial regulatory effects of CO on mediating jasmonate responses and explain the mechanism by which CO works together with JAZ and bHLH subgroup IIId factors to fine-tune jasmonate signaling.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Plantones/genética , Plantones/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ciclopentanos/farmacología , Ciclopentanos/metabolismo , Oxilipinas/farmacología , Oxilipinas/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica de las Plantas/genética
2.
Plant Cell ; 33(9): 3022-3041, 2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34152411

RESUMEN

Seed germination and postgerminative growth require the precise coordination of multiple intrinsic and environmental signals. The phytohormone abscisic acid (ABA) suppresses these processes in Arabidopsis thaliana and the circadian clock contributes to the regulation of ABA signaling. However, the molecular mechanism underlying circadian clock-mediated ABA signaling remains largely unknown. Here, we found that the core circadian clock proteins PSEUDO-RESPONSE REGULATOR5 (PRR5) and PRR7 physically associate with ABSCISIC ACID-INSENSITIVE5 (ABI5), a crucial transcription factor of ABA signaling. PRR5 and PRR7 positively modulate ABA signaling redundantly during seed germination. Disrupting PRR5 and PRR7 simultaneously rendered germinating seeds hyposensitive to ABA, whereas the overexpression of PRR5 enhanced ABA signaling to inhibit seed germination. Consistent with this, the expression of several ABA-responsive genes is upregulated by PRR proteins. Genetic analysis demonstrated that PRR5 promotes ABA signaling mainly dependently on ABI5. Further mechanistic investigation revealed that PRR5 stimulates the transcriptional function of ABI5 without affecting its stability. Collectively, our results indicate that these PRR proteins function synergistically with ABI5 to activate ABA responses during seed germination, thus providing a mechanistic understanding of how ABA signaling and the circadian clock are directly integrated through a transcriptional complex involving ABI5 and central circadian clock components.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Germinación/genética , Proteínas Represoras/genética , Factores de Transcripción/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas Represoras/metabolismo , Semillas/crecimiento & desarrollo , Transducción de Señal , Factores de Transcripción/metabolismo
3.
J Exp Bot ; 74(4): 1176-1185, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36346644

RESUMEN

The phytohormone jasmonate is an essential endogenous signal in the regulation of multiple plant processes for environmental adaptation, such as primary root growth inhibition and root hair elongation. Perception of environmental stresses promotes the accumulation of jasmonate, which is sensed by the CORONATINE INSENSITIVE1 (COI1)-JASMONATE ZIM-DOMAIN (JAZ) co-receptor, triggering the degradation of JAZ repressors and induction of transcriptional reprogramming. The basic helix-loop-helix (bHLH) subgroup IIIe transcription factors MYC2, MYC3, and MYC4 are the most extensively characterized JAZ-binding factors and together stimulate jasmonate-signaled primary root growth inhibition. Conversely, the bHLH subgroup IIId transcription factors (i.e. bHLH3 and bHLH17) physically associate with JAZ proteins and suppress jasmonate-induced root growth inhibition. For root hair development, JAZ proteins interact with and inhibit ROOT HAIR DEFECTIVE 6 (RHD6) and RHD6 LIKE1 (RSL1) transcription factors to modulate jasmonate-enhanced root hair elongation. Moreover, jasmonate also interacts with other signaling pathways (such as ethylene and auxin) to regulate primary root growth and/or root hair elongation. Here, we review recent progress into jasmonate-mediated primary root growth and root hair development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Regulación de la Expresión Génica de las Plantas
4.
Plant Cell ; 32(4): 1049-1062, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31988260

RESUMEN

Root hairs arise from trichoblasts and are crucial for plant anchorage, nutrient acquisition, and environmental interactions. The phytohormone jasmonate is known to regulate root hair development in Arabidopsis (Arabidopsis thaliana), but little is known about the molecular mechanism underlying jasmonate modulation in this process. Here, we show that the application of exogenous jasmonate significantly stimulated root hair elongation, but, on the contrary, blocking the perception or signaling of jasmonate resulted in defective root hairs. Jasmonate consistently elevated the expression levels of several crucial genes positively involved in root hair growth. Mechanistic investigation revealed that JASMONATE ZIM-DOMAIN (JAZ) proteins, critical repressors of jasmonate signaling, physically interacted with ROOT HAIR DEFECTIVE 6 (RHD6) and RHD6 LIKE1 (RSL1), two transcription factors that are essential for root hair development. JAZ proteins inhibited the transcriptional function of RHD6 and interfered with the interaction of RHD6 with RSL1. Genetic analysis indicated that jasmonate promoted root hair growth in a RHD6/RSL1-dependent manner. Moreover, overexpression of RHD6 largely rescued the root hair defects of JAZ-accumulating plants. Collectively, our study reveals a key signaling module in which JAZ repressors of the jasmonate pathway directly modulate RHD6 and RSL1 transcription factors to integrate jasmonate signaling and the root hair developmental process.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Ciclopentanos/farmacología , Oxilipinas/farmacología , Raíces de Plantas/crecimiento & desarrollo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Modelos Biológicos , Mutación/genética , Fenotipo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Plantas Modificadas Genéticamente , Unión Proteica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
5.
Plant Cell ; 31(7): 1520-1538, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31123050

RESUMEN

ABSCISIC ACID INSENSITIVE5 (ABI5) is a crucial regulator of abscisic acid (ABA) signaling pathways involved in repressing seed germination and postgerminative growth in Arabidopsis (Arabidopsis thaliana). ABI5 is precisely modulated at the posttranslational level; however, the transcriptional regulatory mechanisms underlying ABI5 and its interacting transcription factors remain largely unknown. Here, we found that INDUCER OF CBF EXPRESSION1 (ICE1) physically associates with ABI5. ICE1 negatively regulates ABA responses during seed germination and directly suppresses ABA-responsive LATE EMBRYOGENESIS ABUNDANT6 (EM6) and EM1 expression. Genetic analysis demonstrated that the ABA-hypersensitive phenotype of the ice1 mutant requires ABI5. ICE1 interferes with the transcriptional activity of ABI5 to mediate downstream regulons. Importantly, ICE1 also interacts with DELLA proteins, which stimulate ABI5 during ABA signaling. Disruption of ICE1 partially restored the ABA-hyposensitive phenotype of the della mutant, gai-t6 rga-t2 rgl1-1 rgl2-1, indicating that ICE1 functions antagonistically with DELLA in ABA signaling. Consistently, DELLA proteins repress ICE1's transcriptional function and the antagonistic effect of ICE1 on ABI5. Collectively, our study demonstrates that ICE1 antagonizes ABI5 and DELLA activity to maintain the appropriate level of ABA signaling during seed germination, providing a mechanistic understanding of how ABA signaling is fine-tuned by a transcriptional complex involving ABI5 and its interacting partners.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Germinación , Semillas/crecimiento & desarrollo , Transducción de Señal , Factores de Transcripción/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Epistasis Genética/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Germinación/efectos de los fármacos , Modelos Biológicos , Mutación/genética , Fenotipo , Unión Proteica/efectos de los fármacos , Semillas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transcripción Genética/efectos de los fármacos
6.
MycoKeys ; 106: 251-264, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38974462

RESUMEN

Two novel species within the family Dictyosporiaceae are described and illustrated from terrestrial habitats on dead culms of bamboo and an unidentified plant, respectively. Through morphological comparisons and the multi-locus phylogenetic analyses of combined LSU, ITS, SSU, and tef1-α sequence dataset, two species, Gregaritheciumbambusicola, Pseudocoleophomaparaphysoidea are identified. Phylogenetically, both species clustered into a monophyletic clade with strong bootstrap support. Gregaritheciumbambusicola sp. nov. can be distinguished from other species within the genus based on its almost straight ascospores. Pseudocoleophomaparaphysoidea sp. nov. differs from other species in its conidiogenous cells intermixed with paraphyses, longer conidiogenous cells and larger conidia. The identification of this lineage contributes to our understanding of the classification of Dictyosporiaceae.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA