Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nutr Neurosci ; 23(2): 149-160, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29848222

RESUMEN

Background: Folic acid plays an important role in early brain development of offspring, including proliferation and differentiation of neural stem cells known to impact the function of food intake regulatory pathways. Excess (10-fold) intakes of folic acid in the gestational diet have been linked to increased food intake and obesity in male rat offspring post-weaning.Objective: The present study examined the effects of folic acid content in gestational diets on the development and function of two hypothalamic neuronal populations, neuropeptide Y (NPY) and pro-opiomelanocortin (POMC), within food intake regulatory pathways of male Wistar rat offspring at birth and post-weaning.Results: Folic acid fed at 5.0-fold above recommended levels (5RF) to Wistar dams during pregnancy increased the number of mature NPY-positive neurons in the hypothalamus of male offspring, compared to control (RF), 0RF, 2.5RF, and 10RF at birth. Folic acid content had no effect on expression and maturation of POMC-positive neurons. Body weight and food intake were higher in all treatment groups (2.5-, 5.0-, and 10.0-fold folic acid) from birth to 9 weeks post-weaning compared to control. Increased body weight and food intake at 9-weeks post-weaning were accompanied by a reduced activation of POMC neurons in the arcuate nucleus (ARC).Conclusion: Gestational folic acid content modulates expression of mature hypothalamic NPY-positive neurons at birth and activation of POMC-positive neurons at 9-weeks post-weaning in the ARC of male Wistar rat offspring which may contribute to higher body weight and food intake later in life.


Asunto(s)
Regulación del Apetito/fisiología , Dieta , Ácido Fólico/administración & dosificación , Hipotálamo/fisiología , Efectos Tardíos de la Exposición Prenatal , Animales , Peso Corporal/efectos de los fármacos , Femenino , Ácido Fólico/análogos & derivados , Ácido Fólico/análisis , Hipotálamo/citología , Masculino , Fenómenos Fisiologicos Nutricionales Maternos , Neuronas/química , Neuronas/fisiología , Neuropéptido Y/análisis , Embarazo , Proopiomelanocortina/análisis , Ratas , Ratas Wistar , Destete
2.
Neurosci Biobehav Rev ; 157: 105512, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38128771

RESUMEN

Nutriture in utero is essential for fetal brain development through the regulation of neural stem cell proliferation, differentiation, and apoptosis, and has a long-lasting impact on risk of disease in offspring. This review examines the role of maternal methyl donor micronutrients in neuronal development and programming of physiological functions of the hypothalamus, with a focus on later-life metabolic outcomes. Although evidence is mainly derived from preclinical studies, recent research shows that methyl donor micronutrients (e.g., folic acid and choline) are critical for neuronal development of energy homeostatic pathways and the programming of characteristics of the metabolic syndrome in mothers and their children. Both folic acid and choline are active in one-carbon metabolism with their impact on epigenetic modification of gene expression. We conclude that an imbalance of folic acid and choline intake during gestation disrupts DNA methylation patterns affecting mechanisms of hypothalamic development, and thus elevates metabolic disease risk. Further investigation, including studies to determine translatability to humans, is required.


Asunto(s)
Enfermedades Metabólicas , Micronutrientes , Niño , Humanos , Micronutrientes/metabolismo , Ácido Fólico , Colina , Metilación de ADN
3.
Genome Med ; 16(1): 93, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39061094

RESUMEN

BACKGROUND: Statins lower circulating low-density lipoprotein cholesterol (LDLC) levels and reduce cardiovascular disease risk. Though highly efficacious in general, there is considerable inter-individual variation in statin efficacy that remains largely unexplained. METHODS: To identify novel genes that may modulate statin-induced LDLC lowering, we used RNA-sequencing data from 426 control- and 2 µM simvastatin-treated lymphoblastoid cell lines (LCLs) derived from European and African American ancestry participants of the Cholesterol and Pharmacogenetics (CAP) 40 mg/day 6-week simvastatin clinical trial (ClinicalTrials.gov Identifier: NCT00451828). We correlated statin-induced changes in LCL gene expression with plasma LDLC statin response in the corresponding CAP participants. For the most correlated gene identified (ZNF335), we followed up in vivo by comparing plasma cholesterol levels, lipoprotein profiles, and lipid statin response between wild-type mice and carriers of a hypomorphic (partial loss of function) missense mutation in Zfp335 (the mouse homolog of ZNF335). RESULTS: The statin-induced expression changes of 147 human LCL genes were significantly correlated to the plasma LDLC statin responses of the corresponding CAP participants in vivo (FDR = 5%). The two genes with the strongest correlations were zinc finger protein 335 (ZNF335 aka NIF-1, rho = 0.237, FDR-adj p = 0.0085) and CCR4-NOT transcription complex subunit 3 (CNOT3, rho = 0.233, FDR-adj p = 0.0085). Chow-fed mice carrying a hypomorphic missense (R1092W; aka bloto) mutation in Zfp335 had significantly lower non-HDL cholesterol levels than wild-type C57BL/6J mice in a sex combined model (p = 0.04). Furthermore, male (but not female) mice carrying the Zfp335R1092W allele had significantly lower total and HDL cholesterol levels than wild-type mice. In a separate experiment, wild-type mice fed a control diet for 4 weeks and a matched simvastatin diet for an additional 4 weeks had significant statin-induced reductions in non-HDLC (-43 ± 18% and -23 ± 19% for males and females, respectively). Wild-type male (but not female) mice experienced significant reductions in plasma LDL particle concentrations, while male mice carrying Zfp335R1092W allele(s) exhibited a significantly blunted LDL statin response. CONCLUSIONS: Our in vitro and in vivo studies identified ZNF335 as a novel modulator of plasma cholesterol levels and statin response, suggesting that variation in ZNF335 activity could contribute to inter-individual differences in statin clinical efficacy.


Asunto(s)
LDL-Colesterol , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Simvastatina , Animales , Humanos , Ratones , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Simvastatina/farmacología , LDL-Colesterol/sangre , Línea Celular , Masculino , Femenino , Perfilación de la Expresión Génica , Transcriptoma , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Unión al ADN/genética , Colesterol/sangre , Mutación Missense
4.
bioRxiv ; 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37425714

RESUMEN

Background: Statins are the drugs most commonly used for lowering plasma low-density lipoprotein (LDL) cholesterol levels and reducing cardiovascular disease risk. Although generally well tolerated, statins can induce myopathy, a major cause of non-adherence to treatment. Impaired mitochondrial function has been implicated as a cause of statin-induced myopathy, but the underlying mechanism remains unclear. We have shown that simvastatin downregulates transcription of TOMM40 and TOMM22 , genes that encode major subunits of the translocase of outer mitochondrial membrane (TOM) complex which is responsible for importing nuclear-encoded proteins and maintaining mitochondrial function. We therefore investigated the role of TOMM40 and TOMM22 in mediating statin effects on mitochondrial function, dynamics, and mitophagy. Methods: Cellular and biochemical assays and transmission electron microscopy were used to investigate effects of simvastatin and TOMM40 and TOMM22 expression on measures of mitochondrial function and dynamics in C2C12 and primary human skeletal cell myotubes. Results: Knockdown of TOMM40 and TOMM22 in skeletal cell myotubes impaired mitochondrial oxidative function, increased production of mitochondrial superoxide, reduced mitochondrial cholesterol and CoQ levels, disrupted mitochondrial dynamics and morphology, and increased mitophagy, with similar effects resulting from simvastatin treatment. Overexpression of TOMM40 and TOMM22 in simvastatin-treated muscle cells rescued statin effects on mitochondrial dynamics, but not on mitochondrial function or cholesterol and CoQ levels. Moreover, overexpression of these genes resulted in an increase in number and density of cellular mitochondria. Conclusion: These results confirm that TOMM40 and TOMM22 are central in regulating mitochondrial homeostasis and demonstrate that downregulation of these genes by statin treatment mediates disruption of mitochondrial dynamics, morphology, and mitophagy, effects that may contribute to statin-induced myopathy.

5.
bioRxiv ; 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37397985

RESUMEN

Background: Statins lower circulating low-density lipoprotein cholesterol (LDLC) levels and reduce cardiovascular disease risk. Though highly efficacious in general, there is considerable inter-individual variation in statin efficacy that remains largely unexplained. Methods: To identify novel genes that may modulate statin-induced LDLC lowering, we used RNA-sequencing data from 426 control- and 2 µM simvastatin-treated lymphoblastoid cell lines (LCLs) derived from European and African American ancestry participants of the Cholesterol and Pharmacogenetics (CAP) 40 mg/day 6-week simvastatin clinical trial (ClinicalTrials.gov Identifier: NCT00451828). We correlated statin-induced changes in LCL gene expression with plasma LDLC statin response in the corresponding CAP participants. For the most correlated gene identified (ZNF335), we followed up in vivo by comparing plasma cholesterol levels, lipoprotein profiles, and lipid statin response between wild-type mice and carriers of a hypomorphic (partial loss of function) missense mutation in Zfp335 (the mouse homolog of ZNF335). Results: The statin-induced expression changes of 147 human LCL genes were significantly correlated to the plasma LDLC statin responses of the corresponding CAP participants in vivo (FDR=5%). The two genes with the strongest correlations were zinc finger protein 335 (ZNF335 aka NIF-1, rho=0.237, FDR-adj p=0.0085) and CCR4-NOT transcription complex subunit 3 (CNOT3, rho=0.233, FDR-adj p=0.0085). Chow-fed mice carrying a hypomorphic missense (R1092W; aka bloto) mutation in Zfp335 had significantly lower non-HDL cholesterol levels than wild type C57BL/6J mice in a sex combined model (p=0.04). Furthermore, male (but not female) mice carrying the Zfp335R1092W allele had significantly lower total and HDL cholesterol levels than wild-type mice. In a separate experiment, wild-type mice fed a control diet for 4 weeks and a matched simvastatin diet for an additional 4 weeks had significant statin-induced reductions in non-HDLC (-43±18% and -23±19% for males and females, respectively). Wild-type male (but not female) mice experienced significant reductions in plasma LDL particle concentrations, while male mice carrying Zfp335R1092W allele(s) exhibited a significantly blunted LDL statin response. Conclusions: Our in vitro and in vivo studies identified ZNF335 as a novel modulator of plasma cholesterol levels and statin response, suggesting that variation in ZNF335 activity could contribute to inter-individual differences in statin clinical efficacy.

6.
J Nutr Biochem ; 83: 108414, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32544644

RESUMEN

Maternal metabolism begins to return to homeostasis (re-set) following birth and is accelerated by lactation. Delay in metabolic re-set may contribute to postpartum weight retention and later-life metabolic consequences. Folic acid (FA) is essential during pregnancy but inadequate intakes may alter 1-carbon metabolism, consequently affecting energy homeostatic systems. Our objectives were to examine the effects of FA content 1)below and 2)above requirements during pregnancy on the re-set of body weight, markers of hepatic 1-carbon metabolism and central and peripheral energy metabolic pathways in Wistar rat mothers early post-weaning (PW) compared to pregnant controls. Pregnant Wistar rats were fed an AIN-93G diet with FA at 0X, 1X (control, 2 mg FA/kg) or a range above requirements at 2.5X, 5X or 10X recommended levels then the control diet during lactation up to 1 week PW. Dams fed below (0X) or above (5X and 10X) FA requirements had delayed weight-loss from weaning up to 1 week PW, higher plasma insulin and HOMA-IR and changes in glucose and lipid metabolism-regulating genes in muscle, but not liver or adipose tissue compared to controls. Expression of folate-related genes in liver were lower in high FA fed dams. Central food intake neurons were not affected by FA diets. In conclusion, intakes of FA below (0X) or above (5X, 10X) requirements during pregnancy delayed weight-loss, dysregulated 1-carbon pathways in the liver and peripheral energy metabolic pathways in the Wistar rat mother up to 4 weeks after dietary exposure; potentially programming long-term negative metabolic effects and that of her future offspring.


Asunto(s)
Animales Recién Nacidos/metabolismo , Ácido Fólico/metabolismo , Embarazo/metabolismo , Tejido Adiposo/metabolismo , Animales , Glucemia/metabolismo , Femenino , Homeostasis , Humanos , Lactancia , Hígado/metabolismo , Masculino , Fenómenos Fisiologicos Nutricionales Maternos , Ratas , Ratas Wistar
7.
Mol Nutr Food Res ; 64(9): e1901178, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32110848

RESUMEN

SCOPE: High-folic-acid diets during pregnancy result in obesity in the offspring, associated with altered DNA-methylation of hypothalamic food intake neurons. Like folic acid, the methyl-donor choline modulates foetal brain development, but its long-term programing effects on energy regulation remain undefined. This study aims to describe the effect of choline intake during pregnancy on offspring phenotype and hypothalamic energy-regulatory mechanisms. METHODS AND RESULTS: Wistar rat dams are fed an AIN-93G diet with recommended choline (RC, 1 g kg-1 diet), low choline (LC, 0.5-fold), or high choline (HC, 2.5-fold) during pregnancy. Male pups are terminated at birth and 17 weeks post-weaning. Brain 1-carbon metabolites, body weight, food intake, energy expenditure, plasma hormones, and protein expression of hypothalamic neuropeptides are measured. HC pups have higher expression of the orexigenic neuropeptide-Y neurons at birth, consistent with higher cumulative food intake and body weight gain post-weaning compared to RC and LC offspring. LC pups have lower leptin receptor expression at birth and lower energy expenditure and activity during adulthood. CONCLUSION: Choline content of diets that are consumed by rats during pregnancy affects the later-life phenotype of offspring, associated with altered in utero programing of hypothalamic food intake regulation.


Asunto(s)
Colina/farmacología , Metabolismo Energético , Hipotálamo/metabolismo , Efectos Tardíos de la Exposición Prenatal , Animales , Peso Corporal , Colina/metabolismo , Ingestión de Alimentos , Femenino , Lactancia , Masculino , Neuropéptidos/metabolismo , Embarazo , Ratas Wistar , Destete
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA