RESUMEN
Aberrant skipping of coding exons in CD19 and CD22 compromises the response to immunotherapy in B-cell malignancies. Here, we showed that the MS4A1 gene encoding human CD20 also produces several messenger RNA (mRNA) isoforms with distinct 5' untranslated regions. Four variants (V1-4) were detected using RNA sequencing (RNA-seq) at distinct stages of normal B-cell differentiation and B-lymphoid malignancies, with V1 and V3 being the most abundant. During B-cell activation and Epstein-Barr virus infection, redirection of splicing from V1 to V3 coincided with increased CD20 positivity. Similarly, in diffuse large B-cell lymphoma, only V3, but not V1, correlated with CD20 protein levels, suggesting that V1 might be translation-deficient. Indeed, the longer V1 isoform contained upstream open reading frames and a stem-loop structure, which cooperatively inhibited polysome recruitment. By modulating CD20 isoforms with splice-switching morpholino oligomers, we enhanced CD20 expression and anti-CD20 antibody rituximab-mediated cytotoxicity in a panel of B-cell lines. Furthermore, reconstitution of CD20-knockout cells with V3 mRNA led to the recovery of CD20 positivity, whereas V1-reconstituted cells had undetectable levels of CD20 protein. Surprisingly, in vitro CD20-directed chimeric antigen receptor T cells were able to kill both V3- and V1-expressing cells, but the bispecific T-cell engager mosunetuzumab was only effective against V3-expressing cells. To determine whether CD20 splicing is involved in immunotherapy resistance, we performed RNA-seq on 4 postmosunetuzumab follicular lymphoma relapses and discovered that in 2 of them, the downregulation of CD20 was accompanied by a V3-to-V1 shift. Thus, splicing-mediated mechanisms of epitope loss extend to CD20-directed immunotherapies.
Asunto(s)
Infecciones por Virus de Epstein-Barr , Neoplasias , Humanos , Empalme Alternativo , ARN Mensajero/genética , Regiones no Traducidas 5' , Infecciones por Virus de Epstein-Barr/genética , Herpesvirus Humano 4/genética , Antígenos CD20/genética , Isoformas de Proteínas/genética , Inmunoterapia , Biosíntesis de Proteínas , Neoplasias/genéticaRESUMEN
Aberrant splicing is a hallmark of leukemias with mutations in splicing factor (SF)-encoding genes. Here we investigated its prevalence in pediatric B-cell acute lymphoblastic leukemias (B-ALL), where SFs are not mutated. By comparing these samples to normal pro-B cells, we found thousands of aberrant local splice variations (LSVs) per sample, with 279 LSVs in 241 genes present in every comparison. These genes were enriched in RNA processing pathways and encoded â¼100 SFs, e.g. hnRNPA1. HNRNPA1 3'UTR was most pervasively mis-spliced, yielding the transcript subject to nonsense-mediated decay. To mimic this event, we knocked it down in B-lymphoblastoid cells and identified 213 hnRNPA1-regulated exon usage events comprising the hnRNPA1 splicing signature in pediatric leukemia. Some of its elements were LSVs in DICER1 and NT5C2, known cancer drivers. We searched for LSVs in other leukemia and lymphoma drivers and discovered 81 LSVs in 41 additional genes. Seventy-seven LSVs out of 81 were confirmed using two large independent B-ALL RNA-seq datasets, and the twenty most common B-ALL drivers, including NT5C2, showed higher prevalence of aberrant splicing than of somatic mutations. Thus, post-transcriptional deregulation of SF can drive widespread changes in B-ALL splicing and likely contributes to disease pathogenesis.
Asunto(s)
Empalme Alternativo , Linfocitos B/metabolismo , Regulación Leucémica de la Expresión Génica , Ribonucleoproteína Nuclear Heterogénea A1/genética , Degradación de ARNm Mediada por Codón sin Sentido , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Regiones no Traducidas 3' , 5'-Nucleotidasa/genética , 5'-Nucleotidasa/metabolismo , Adulto , Linfocitos B/patología , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/patología , Línea Celular Tumoral , Niño , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Exones , Ribonucleoproteína Nuclear Heterogénea A1/metabolismo , Humanos , Intrones , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Cultivo Primario de Células , ARN Helicasas/genética , ARN Helicasas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Factores de Empalme Serina-Arginina/antagonistas & inhibidores , Factores de Empalme Serina-Arginina/genética , Factores de Empalme Serina-Arginina/metabolismo , Transactivadores/genética , Transactivadores/metabolismoRESUMEN
Noncanonical exon usage plays many important roles in cellular phenotypes, but its contribution to human B-cell development remains sketchily understood. To fill this gap, we collected various B-cell fractions from bone marrow (BM) and tonsil donors, performed RNA sequencing, and examined transcript variants. We identified 150 genes that harbor local splicing variations in all pairwise comparisons. One of them encodes FBXW7, an E3 ubiquitin ligase implicated as a driver in several blood cancers. Surprisingly, we discovered that in normal human pro-B cells, the predominant transcript used an alternative first exon to produce the poorly characterized FBXW7ß isoform, previously thought to be restricted to neural tissues. The FBXW7ß transcript was also abundant in cell lines and primary samples of pediatric B-cell acute lymphoblastic leukemia (B-ALL), which originates in the BM. When overexpressed in a heterologous cell system, this transcript yielded the expected protein product, as judged by anti-FLAG immunoblotting and mass spectrometry. Furthermore, in REH B-ALL cells, FBXW7ß mRNA was the only FBXW7 isoform enriched in the polyribosome fraction. To shed light on possible functions of FBXW7ß, we used gain- and loss-of-function approaches and identified an FBXW7-dependent inflammatory gene signature, apparent in a subset of B-ALL with high FBXW7ß expression. This signature contained several members of the tumor necrosis factor superfamily, including those comprising the HLA Class III cluster (LTB, LST1, NCR3, LTA, and NFKBIL1). Our findings suggest that FBXW7ß expression drives proinflammatory responses, which could contribute to normal B-cell development, leukemogenesis, and responses to anticancer therapies.
Asunto(s)
Proteína 7 que Contiene Repeticiones F-Box-WD , Células Precursoras de Linfocitos B , Niño , Humanos , Línea Celular , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Células Precursoras de Linfocitos B/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Activación TranscripcionalRESUMEN
Aberrant skipping of coding exons in CD19 and CD22 compromises responses to immunotherapy for B-cell malignancies. Here, we show that the MS4A1 gene encoding human CD20 also produces several mRNA isoforms with distinct 5' untranslated regions (5'-UTR). Four variants (V1-4) were detectable by RNA-seq in distinct stages of normal B-cell differentiation and B-lymphoid malignancies, with V1 and V3 being the most abundant by far. During B-cell activation and Epstein-Barr virus infection, redirection of splicing from V1 to V3 coincided with increased CD20 positivity. Similarly, in diffuse large B-cell lymphoma only V3, but not V1, correlated with CD20 protein levels, suggesting that V1 might be translation-deficient. Indeed, the longer V1 isoform was found to contain upstream open reading frames (uORFs) and a stem-loop structure, which cooperatively inhibited polysome recruitment. By modulating CD20 isoforms with splice-switching Morpholino oligomers, we enhanced CD20 expression and anti-CD20 antibody rituximab-mediated cytotoxicity in a panel of B-cell lines. Furthermore, reconstitution of CD20-knockout cells with V3 mRNA led to the recovery of CD20 positivity, while V1-reconstituted cells had undetectable levels of CD20 protein. Surprisingly, in vitro CD20-directed CAR T cells were able to kill both V3- and V1-expressing cells, but the bispecific T cell engager mosunetuzumab was only effective against V3-expressing cells. To determine whether CD20 splicing is involved in immunotherapy resistance, we performed RNA-seq on four post-mosunetuzumab follicular lymphoma relapses and discovered that in two of them downregulation of CD20 was accompanied by the V3-to-V1 shift. Thus, splicing-mediated mechanisms of epitope loss extend to CD20-directed immunotherapies. Key Points: In normal & malignant human B cells, CD20 mRNA is alternatively spliced into four 5'-UTR isoforms, some of which are translation-deficient.The balance between translation-deficient and -competent isoforms modulates CD20 protein levels & responses to CD20-directed immunotherapies. Explanation of Novelty: We discovered that in normal and malignant B-cells, CD20 mRNA is alternatively spliced to generate four distinct 5'-UTRs, including the longer translation-deficient V1 variant. Cells predominantly expressing V1 were still sensitive to CD20-targeting chimeric antigen receptor T-cells. However, they were resistant to the bispecific anti-CD3/CD20 antibody mosunetuzumab, and the shift to V1 were observed in CD20-negative post-mosunetuzumab relapses of follicular lymphoma.
RESUMEN
A course on vaccine development asked students to write a blog addressing general anti-vaccination strategies and their significance today, in the context of the resistance seen against novel SARS-CoV-2 mRNA vaccines. This perspective explores how and why these efforts are successful at reducing vaccine uptake and why, for the most part, efforts to combat the movement have been unsuccessful. This summary of the collective view of the class provides recommendations for combatting current and future campaigns of misinformation. It is hoped that this perspective will serve as a call to action for clinical pharmacologists and translational scientists to do their part to educate the lay community and promote the science in an open and transparent manner to ensure that current and future vaccines fulfill their potential.
Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/prevención & control , Vacunas contra la COVID-19 , Comunicación , Humanos , VacunaciónRESUMEN
Plants, algae and cyanobacteria need to regulate photosynthetic light harvesting in response to the constantly changing light environment. Rapid adjustments are required to maintain fitness because of a trade-off between efficient solar energy conversion and photoprotection. The xanthophyll cycle, in which the carotenoid pigment violaxanthin is reversibly converted into zeaxanthin, is ubiquitous among green algae and plants and is necessary for the regulation of light harvesting, protection from oxidative stress and adaptation to different light conditions(1,2). Violaxanthin de-epoxidase (VDE) is the key enzyme responsible for zeaxanthin synthesis from violaxanthin under excess light. Here we show that the Chlorophycean VDE (CVDE) gene from the model green alga Chlamydomonas reinhardtii encodes an atypical VDE. This protein is not homologous to the VDE found in plants and is instead related to a lycopene cyclase from photosynthetic bacteria(3). Unlike the plant-type VDE that is located in the thylakoid lumen, the Chlamydomonas CVDE protein is located on the stromal side of the thylakoid membrane. Phylogenetic analysis suggests that CVDE evolved from an ancient de-epoxidase that was present in the common ancestor of green algae and plants, providing evidence of unexpected diversity in photoprotection in the green lineage.
Asunto(s)
Proteínas Bacterianas/genética , Chlamydomonas reinhardtii/fisiología , Evolución Molecular , Oxidorreductasas/genética , Fotosíntesis , Proteínas Bacterianas/metabolismo , Chlamydomonas reinhardtii/enzimología , Chlamydomonas reinhardtii/genética , Oxidorreductasas/metabolismo , Filogenia , Tilacoides/metabolismoRESUMEN
Glucocorticoids are widely used in conjunction with chemotherapy for ovarian cancer to prevent hypersensitivity reactions. Here we reveal a novel role for glucocorticoids in the inhibition of ovarian cancer metastasis. Glucocorticoid treatments induce the expression of miR-708, leading to the suppression of Rap1B, which result in the reduction of integrin-mediated focal adhesion formation, inhibition of ovarian cancer cell migration/invasion and impaired abdominal metastasis in an orthotopic xenograft mouse model. Restoring Rap1B expression reverts glucocorticoid-miR-708 cascade-mediated suppression of ovarian cancer cell invasion and metastasis. Clinically, low miR-708 and high Rap1B are found in late-state ovarian tumours, as compared with normal, and patients with high miR-708 show significantly better survival. Overall, our findings reveal an opportunity for glucocorticoids and their downstream mediators, miR-708 or Rap1B, as therapeutic modalities against metastatic ovarian epithelial cancer.