RESUMEN
Expression and purification of ß-galactosidases derived from Bifidobacterium provide a new resource for efficient lactose hydrolysis and lactose intolerance alleviation. Here, we cloned and expressed two ß-galactosidases derived from Bifidobacterium. The optimal pH for BLGLB1 was 5.5, and the optimal temperature was 45 °C, at which the enzyme activity of BLGLB1 was higher than that of commercial enzyme E (300 ± 3.6 U/mg) under its optimal conditions, reaching 2200 ± 15 U/mg. The optimal pH and temperature for BPGLB1 were 6.0 and 45 °C, respectively, and the enzyme activity (0.58 ± 0.03 U/mg) under optimum conditions was significantly lower than that of BLGLB1. The structures of the two ß-galactosidase were similar, with all known key sites conserved. When o-nitrophenyl-ß-D-galactoside (oNPG) was used as an enzyme reaction substrate, the maximum reaction velocity (Vmax) for BLGLB1 and BPGLB1 was 3700 ± 100 U/mg and 1.1 ± 0.1 U/mg, respectively. The kinetic constant (Km) of BLGLB1 and BPGLB1 was 1.9 ± 0.1 and 1.3 ± 0.3 mmol/L, respectively. The respective catalytic constant (kcat) of BLGLB1 and BPGLB1 was 1700 ± 40 s-1 and 0.5 ± 0.02 s-1, respectively; the respective kcat/Km value of BLGLB1 and BPGLB1 was 870 L/(mmolâs) and 0.36 L/(mmolâs), respectively. The Km, kcat and Vmax values of BLGLB1 were superior to those of earlier reported ß-galactosidase derived from Bifidobacterium. Overall, BLGLB1 has potential application in the food industry.
Asunto(s)
Bifidobacterium longum , Bifidobacterium pseudocatenulatum , Bifidobacterium/genética , Bifidobacterium/metabolismo , Bifidobacterium longum/genética , Bifidobacterium pseudocatenulatum/metabolismo , Clonación Molecular , Concentración de Iones de Hidrógeno , Cinética , Lactosa/metabolismo , Temperatura , beta-Galactosidasa/químicaRESUMEN
Background: Although many studies have shown that consumption of probiotics is relevant to diabetes, the effects of probiotics improves clinical outcomes in type 2 diabetes have yielded conflicting results. The aim of this meta-analysis was conducted to assess the effects of probiotics supplementation on glycemic, blood lipids, pressure and inflammatory control in type 2 diabetes.Methods: PubMed, Web of science, Embase and the Cochrane Library databases were searched for relevant studies from February 2015 up to Janurary 2020, with no language restrictions. The pooled results were calculated with the use of a random-effects model to assess the impact of supplemental probiotics on glycemic, blood lipids, pressure and inflammatory control in type 2 diabetes. Additionally, subgroup analysis was conducted based on patients age, body mass index (BMI), country and duration of the probiotics supplement, respectively.Results: 13 studies were included in this meta-analysis, involving a total of 818 participants in 8 countries. Overall, compared with control groups, the subjects who received multiple species of probiotics had a statistically significant reduction in fasting blood sugar (FBS), homeostasis model assessment of insulin resistance (HOMA-IR), total cholesterol (TC), triglycerides (TG), systolic blood pressure (SBP), diastolic blood pressure (DBP) and tumor necrosis factor (TNF) -α [standardized mean difference (SMD): -0.89 mg/Dl, 95% CI: -1.66, -0.12 mg/dL; SMD: -0.43, 95% CI: -0.63, -0.23; SMD: -0.19 mg/dL, 95% CI: -0.36, -0.01 mg/dL; SMD: -0.23 mg/dL, 95% CI: -0.40, -0.05 mg/dL; SMD: -5.61 mmHg, 95% CI: -9.78, -1.45 mmHg; SMD: -3.41 mmHg, 95% CI: -6.12, -0.69 mmHg; and SMD: 6.92 pg/ml, 95% CI: 5.95, 7.89 pg/ml, respectively]. However, the subjects who received single-species of probiotic or probiotic with co-supplements in food only changed FBS, HOMA-IR, DBP and TG levels. Moreover, subgroup analyses revealed that the effects of probiotics supplementation on FBS, HMOA-IR, SBP and DBP are significantly influenced by patients age, body mass index (BMI), country and duration of the probiotics supplement.Conclusion: Our analysis revealed that glycemic, lipids, blood pressure and inflammation indicators are significantly improved by probiotic supplementation, particularly the subjects who ages ≤ 55, baseline BMI< 30 kg/m2, duration of intervention more than 8 weeks, and received multiple species probiotic.
Asunto(s)
Diabetes Mellitus Tipo 2 , Hipercolesterolemia , Hiperglucemia , Hipertensión , Probióticos , Glucemia , Preescolar , Suplementos Dietéticos , Humanos , Hiperglucemia/prevención & control , LactanteRESUMEN
The extracellular secreted protein of Bifidobacterium longum (B. longum) plays an important role in maintaining the homeostasis of the human intestinal microenvironment. However, the mechanism(s) of interaction remain unclear. Lysozyme is a kind of antibacterial peptide. In this study, the amino acid sequence of a lysozyme-like protein of B. longum based on whole-genome data of an isolate from human gut feces was found. We further predicted functional domains from the amino acid sequence, purified the protein, and verified its bioactivity. The growth of some bacteria were significantly delayed by the 020402_LYZ M1 protein. In addition, the gut microbiota was analyzed via high-throughput sequencing of 16S rRNA genes and an in vitro fermentation model, and the fluctuations in the gut microbiota under the treatment of 020402_LYZ M1 protein were characterized. The 020402_LYZ M1 protein affected the composition of human gut microbiota significantly, implying that the protein is able to communicate with intestinal microbes as a regulatory factor.
Asunto(s)
Proteínas Bacterianas/metabolismo , Bifidobacterium/metabolismo , Microbioma Gastrointestinal , Interacciones Microbianas , Proteínas Bacterianas/química , Bifidobacterium/enzimología , Biología Computacional/métodos , Heces/microbiología , Humanos , Modelos Moleculares , Proteoma , Proteómica/métodos , Relación Estructura-ActividadRESUMEN
Introduction: Adding a fermentation medium is an effective way to improve the quality of cigar tobacco leaves. Methods: A novel microbial fermentation medium produced by an edible medicinal fungus, Tremella aurantialba SCT-F3 (CGMCC No.23831) was used to improve the quality of cigar filler leaves (CFLs). Changes in sensory quality, chemical components, volatile flavor compounds (VFCs), and the structure and function of microbes were investigated during the fermentation process. Results: The sensory quality of CFLs supplemented with the T. aurantialba SCT-F3 fermentation medium significantly improved. Adding the fermentation medium increased the total alkaloid, reducing sugar, total sugar, and 12 VFCs significantly. A total of 31 microbial genera were significantly enriched, which increased the microbial community's richness and diversity. Microbial functions increased, including nucleotide biosynthesis, amino acid biosynthesis, fatty acid and lipid biosynthesis, nicotine degradation, and nicotinate degradation. During fermentation, the total alkaloid, reducing sugar, and total sugar content decreased. The richness and diversity of the microbial community decreased, whereas bacterial enzyme activity increased. At the end of fermentation, the sensory quality was excellent. The microbial structure gradually stabilized, and functional genes were low. The contents of the four Maillard reaction products and three nicotine degradation products increased significantly. 2-Ethyl-6-methylpyrazine, methylpyrazine, D,L-anatabine, ß-nicotyrine, nicotinic degradation products, and total nitrogen were significantly and positively correlated with sensory quality. Methylpyrazine, D,L-anatabine, and ß-nicotyrine were negatively correlated with Luteimonas, Mitochondria, Paracoccus, Stemphylium, and Stenotrophomonas. Conclusion: This research provides not only a new microbial fermentation medium that utilizes edible and medicinal fungi to improve the quality of fermented CFLs, but also new ideas for the development and application of other edible medicinal fungi to improve the quality of cigar tobacco leaves.
RESUMEN
Background: Tobacco alcoholization is an important step in increasing the quality of tobacco leaf, which may convert a portion of low-grade tobacco leaves into useable product, however this may take to 2-3 years. The addition of exogenous microorganisms to tobacco leaves and treating them by biological fermentation can shorten the maturation time of tobacco leaves, and improve the quality and applicability of low-grade tobacco leaves Methods: Several strains were screened from low-grade tobacco by flow cytometry, including the bacteria Bacillus amyloliticus, with starch degradation ability and Bacillus kochii, with protein degradation ability, and the fungus Filobasidium magnum with lipid oxidase ability, and were inoculated onto tobacco leaves, both individually and in combination, for solid-state fermentation Results: The greatest improvement in tobacco quality was observed when strains 4# and 3# were applied at a ratio of 3:1. The Maillard reaction products, such as 2-amyl furan, 1-(2-furanmethyl) -1 h-pyrrole, furfural and 2, 5-dimethylpyrazine, were significantly increased, by up to more than 2 times. When strains F7# and 3# were mixed at a ratio of 3:1, the improvement of sensory evaluation index was better than that of pure cultures. The increase of 3-(3, 4-dihydro-2h-pyrro-5-yl) pyridine, ß -damasone and benzyl alcohol was more than 1 times. The increase of 2-amyl-furan was particularly significant, up to 20 times Conclusion: The functional strains screened from tobacco leaves were utilized for the biological fermentation of tobacco leaves, resulting in the reduction of irritation and an improvement in quality of final product, showing a good potential for application.
RESUMEN
The agricultural fermentation processing of cigar tobacco leaves (CTLs), including air-curing and agricultural fermentation, carried out by tobacco farmers has rarely been studied. In this study, we have investigated the microbial community in the CTLs during air-curing and agricultural fermentation by 16S rRNA and ITS gene high-throughput sequencing. The results showed that the richness of microbial communities gradually increased with the development of agricultural fermentation, which means that not all microorganisms in CTLs come from the fields where tobacco grows, but gradually accumulate into CTLs during the fermentation process. Enterobacteriaceae, Chloroplast, and Alternaria were the dominant genera in the air-cured CTLs. Aquabacterium, unclassified Burkholderiaceae, Caulobacter, Brevundimonas, and Aspergillus were the dominant genera in the agriculturally fermented CTLs. Acinetobacter, Methylobacterium, Sampaiozyma, and Plectosphaerella first significantly increased, and then significantly decreased during agricultural processing. The changes in microbial communities are mainly related to their different functions during fermentation. This means that when the fermentation effect of the original microbial community in cigar tobacco leaves is not ideal, we can optimize or design the microbial community based on the fermentation function that the microbial community needs to achieve. These results may help adjust and optimize the agricultural fermentation process of CTLs, and help develop the quality of CTLs and increase the income of tobacco farmers.
RESUMEN
Salmonella is a widely distributed foodborne pathogen. The use of Salmonella phages as biocontrol agents has recently gained significant interest. Because the Salmonella genus has high diversity, efforts are necessary to identify lytic Salmonella phages focusing on different serovars. Here, five Salmonella phages were isolated from soil samples, and vB_SalP_TR2 was selected as a novel phage with high lytic potential against the host Salmonella serovar Albany, as well as other tested serovars, including Corvallis, Newport, Kottbus, and Istanbul. Morphological analyses demonstrated that phage vB_SalP_TR2 belongs to the Podoviridae family, with an icosahedral head (62 ± 0.5 nm in diameter and 60 ± 1 nm in length) and a short tail (35 ± 1 nm in length). The latent period and burst size of phage vB_SalP_TR2 was 15 min and 211 PFU/cell, respectively. It contained a linear dsDNA of 71,453 bp, and G + C content was 40.64%. Among 96 putative open reading frames detected, only 35 gene products were found in database searches, with no virulence or antibiotic resistance genes being identified. As a biological control agent, phage vB_SalP_TR2 exhibited a high temperature and pH tolerance. In vitro, it lysed most S. Albany after 24 h at 37°C with multiplicities of infection of 0.0001, 0.001, 0.01, 0.1, 1, 10, and 100. In food matrices (milk and chicken meat), treatment with phage vB_SalP_TR2 also reduced the number of S. Albany compared with that in controls. These findings highlighted phage vB_SalP_TR2 as a potential antibacterial agent for the control of Salmonella in food samples.
RESUMEN
Bifidobacterium, an important genus for human health, is difficult to isolate. We applied metagenomics, pangenomics, and enzymology to determine the dominant glycoside hydrolase (GH) families of Bifidobacterium and designed selective medium for Bifidobacterium isolation. Pangenomics results showed that the GH13, GH3, GH42, and GH43 families were highly conserved in Bifidobacterium. Metagenomic analysis of GH families in human faecal samples was performed. The results indicated that Bifidobacterium contains core GHs for utilizing raffinose, D-trehalose anhydrous, D(+)-cellobiose, melibiose, lactulose, lactose, D(+)-sucrose, resistant starch, pullulan, xylan, and glucan. These carbohydrates as the main carbon sources were applied for selective media, which were more conducive to the growth of bifidobacteria. In the medium with lactose, raffinose and xylan as the main carbon sources, the ratio of cultivable bifidobacteria to cultivable microorganisms were 89.39% ± 2.50%, 71.45% ± 0.99%, and 53.95% ± 1.22%, respectively, whereas the ratio in the ordinary Gifu anaerobic medium was only 17.90% ± 0.58%. Furthermore, the species significantly (p < 0.05) varied among samples from different individuals. Results suggested that xylan might be a prebiotic that benefits host health, and it is feasible to screen and isolate bifidobacteria using the oligosaccharides corresponding to the specific GHs of bifidobacteria as the carbon sources of the selective media.
RESUMEN
Nucleation particle growth plays a major role in the occurrence of fine particles, yet the mechanism of new particle formation (NPF) remains ambiguous in the complex atmosphere of megacities and hinders the development of measures to mitigate PM2.5 pollution. In this study, the chemistry of ultrafine particles during the growth phase of nucleation events was investigated in urban Beijing from Nov. 15, 2018 to Jan. 15, 2019, using two scanning mobility particle spectrometers (SMPS) systems and an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). During this intense campaign, 11 NPF events were observed and the growth rate (GR) of nanoparticles ranged from 12.5 to 24.5 nm h-1. Four periodic cycles of PM2.5 episodes that included aerosol particle growth to particulate matter pollution were identified. Based on the QGR - QAMS theoretical frame that exploring the balance between the source rate of condensable vapors and the observed growth rate of nanoparticles, we clearly showed the physical and chemical evolution of nano-particle during the growth processes to ambient-atmosphere sizes (>100 nm). Generally, the modal diameter of aerosol particles grew by more than 100 nm (7 out of 11 NPF events) when the nitrate concentration and less-oxidized oxygenated organic aerosol (LO-OOA) were high; however, another class of aerosol particle growth was limited to 50-100 nm (3 out of 11 NPF events) when sulfate was high. Note that the remaining one NPF event could not be identified if it can grow up to 100 nm or not due to the unavailable of observation data during the late growth stage. By linking the aerosol growth with chemical compositions, sulfate and organics were found to be the main contributors during the initial stage of the aerosol growth, while cooking-related OA (COA) enhanced the transition stage, and nitrate and more-oxidized OOA (MO-OOA) dominated the subsequent growth of aerosol to ambient-atmosphere sizes. An important portion of aerosol growth in PM2.5 was controlled by semi-volatile organic vapors, which can partition into the externally condensed phase of the accumulation mode and coarse mode via the physical process of adsorption. Through quantifying the physical and chemical properties of aerosol particle growth, the detail processes of nucleation initiated PM2.5 pollution episodes were evaluated and provided observational evidence on the formation mechanism of winter haze pollution in the megacity of Beijing.
Asunto(s)
Contaminantes Atmosféricos , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Beijing , Monitoreo del Ambiente , Tamaño de la Partícula , Material Particulado/análisisRESUMEN
Hypercholesterolemia can cause many diseases, but it can effectively regulated by Lactobacillus. This study aimed to evaluate the cholesterol-lowering mechanism of Enterococcus faecium strain 132 and Lactobacillusparacasei strain 201. These results showed that both the strains decreased serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), triglycerides (TG), liver TC and TG and increased fecal TC, TG and total bile acid (TBA) levels. Additionally, both strains also reduced glutamic-pyruvic transaminase (ALT), glutamic oxaloacetic transaminase (AST) and levels of tissue inflammation levels to improve the lipid profile, and they reduced fat accumulation partially by alleviating inflammatory responses. Furthermore, both strains regulated the expression of the CYP8B1, CYP7A1, SREBP-1, SCD1 and LDL-R gene to promote cholesterol metabolism and reduce TG accumulation. Interventions with both strains also altered the gut microbiota, and decreasing the abundance of Veillonellaceae, Erysipelotrichaceae and Prevotella. Furthermore, fecal acetic acid and propionic acid were increased by this intervention. Overall, the results suggested that E. faecium strain 132 and L. paracasei strain 201 can alleviate hypercholesterolemia in rats and might be applied as a new type of hypercholesterolemia agent in functional foods.
Asunto(s)
Anticolesterolemiantes/farmacología , Colesterol/metabolismo , Enterococcus faecium , Hipercolesterolemia/microbiología , Lacticaseibacillus paracasei , Probióticos/farmacología , Ácido Acético/análisis , Animales , Colesterol 7-alfa-Hidroxilasa/metabolismo , LDL-Colesterol/metabolismo , Modelos Animales de Enfermedad , Heces/química , Heces/microbiología , Alimentos Funcionales/microbiología , Microbioma Gastrointestinal/fisiología , Humanos , Hipercolesterolemia/metabolismo , Hígado/metabolismo , Hígado/microbiología , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Masculino , Propionatos/análisis , Ratas , Estearoil-CoA Desaturasa/metabolismo , Esteroide 12-alfa-Hidroxilasa/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Triglicéridos/metabolismoRESUMEN
To what extent anthropogenic emissions could influence volatile organic compound (VOCs) concentrations and related atmospheric reactivity is still poorly understood. China's 70th National Day holidays, during which anthropogenic emissions were significantly reduced to ensure good air quality on Anniversary Day, provides a unique opportunity to investigate these processes. Atmospheric oxidation capacity (AOC), OH reactivity, secondary transformation, O3 formation and VOCs-PM2.5 sensitivity are evaluated based on parameterization methods and simultaneous measurements of VOCs, O3, NOx, CO, SO2, PM2.5, JO1D, JNO2, JNO3 carried out at a suburban site between Beijing and Tianjin before, during, and after the National Day holiday 2019. During the National Day holidays, the AOC, OH reactivity, O3 formation potential (OFP) and secondary organic aerosol formation potential (SOAP) were 1.6 × 107 molecules cm-3 s-1, 41.8 s-1, 299.2 µg cm-3 and 1471.8 µg cm-3, respectively, which were 42%, 29%, 47% and 42% lower than pre-National Day values and -12%, 42%, 36% and 42% lower than post-National Day values, respectively. Reactions involving OH radicals dominated the AOC during the day, but OH radicals and O3 reactions at night. Alkanes (the degree of unsaturation = 0, (D, Equation (1)) accounted for the largest contributions to the total VOCs concentration, oxygenated VOCs (OVOCs; D ≤ 1) to OH reactivity and OFP, and aromatics (D = 4) to the SOAP. O3 production was identified as VOCs-limited by VOCs (ppbC)/NOx (ppbv) ratios during the sampling campaign, with greater VOCs limitation during post- National Day and more-aged air masses during the National Day. The VOCs-sensitivity coefficient (VOCs-S) suggested that VOCs were more sensitive to PM2.5 in low-pollution domains and during the National Day holiday. This study emphasizes the importance of not only the abundance, reactivity, and secondary transformation of VOCs but also the effects of VOCs on PM2.5 for the development of effective control strategies to minimize O3 and PM2.5 pollution.
Asunto(s)
Contaminantes Atmosféricos , Ozono , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Beijing , China , Monitoreo del Ambiente , Vacaciones y Feriados , Ozono/análisis , Compuestos Orgánicos Volátiles/análisisRESUMEN
Fine particle explosive growth (FPEG) events are frequently observed in heavy haze episodes in Beijing, the characteristics and formation mechanism of which remain not fully understood. In this study, a five year (2013-2017) online observation was conducted in Beijing and the chemical evolution pattern of FPEG events was analyzed to understand its formation mechanism. A total of 132 FPEG events were identified, and steadily decreased from 39 events in 2013 to 19 events in 2017. More than 70% of the FPEG events occurred in winter and autumn, which coincides with adverse weather conditions and enhanced primary emissions. Organic matter (OM) was the dominated components (~30%) in PM2.5, but it only accounted for 10% of total FPEG events as a driven factor, because its contribution usually decreased when the FPEG events developed. In contrast, the secondary inorganic species were the dominated driven factors, and sulfate-driven events accounted >50%. During the period of 2013-2017, the contribution from regional sources decreased significantly mainly due to the reduction of emissions from regional sources, while the contribution from local sources remained largely unchanged, indicating that the local secondary transformation played a leading role in promoting the FPEG events. The low nitrogen oxidation rates (NOR, 0.12⯱â¯0.07) and the weak increase trend of NOR with elevated RH were observed, indicating the formation of which might be promoted by the homogenous reaction between HNO3 and NH3. In contrast, a significant increase in sulfur oxidation rate (SOR, 0.50⯱â¯0.19) was observed when RHâ¯>â¯50%, suggesting enhanced heterogeneous oxidation of SO2 in FPEG events. In addition, our analysis suggest the S (IV) heterogeneous oxidation rates in FPEG events depend mainly on the aerosol liquid water content (ALWC) in addition to the aerosol acidity. This study provides observational evidence for understanding the formation mechanism of FPEG events in Beijing.
RESUMEN
Access to health information by consumers is hampered by a fundamental language gap. Current attempts to close the gap leverage consumer oriented health information, which does not, however, have good coverage of slang medical terminology. In this paper, we present a Bayesian model to automatically align documents with different dialects (slang, common and technical) while extracting their semantic topics. The proposed diaTM model enables effective information retrieval, even when the query contains slang words, by explicitly modeling the mixtures of dialects in documents and the joint influence of dialects and topics on word selection. Simulations using consumer questions to retrieve medical information from a corpus of medical documents show that diaTM achieves a 25% improvement in information retrieval relevance by nDCG@5 over an LDA baseline.