Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Trends Biochem Sci ; 48(3): 288-302, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36280495

RESUMEN

Antisynthetase syndrome (ASSD) is an autoimmune disease characterized by circulating autoantibodies against one of eight aminoacyl-tRNA synthetases (aaRSs). Although these autoantibodies are believed to play critical roles in ASSD pathogenesis, the nature of their roles remains unclear. Here we describe ASSD pathogenesis and discuss ASSD-linked aaRSs - from the WHEP domain that may impart immunogenicity to the role of tRNA in eliciting the innate immune response and the secretion of aaRSs from cells. Through these explorations, we propose that ASSD pathogenesis involves the tissue-specific secretion of aaRSs and that extracellular tRNAs or tRNA fragments and their ability to engage Toll-like receptor signaling may be important disease factors.


Asunto(s)
Aminoacil-ARNt Sintetasas , Miositis , Humanos , Aminoacil-ARNt Sintetasas/genética , ARN de Transferencia/genética , Autoanticuerpos
2.
Nucleic Acids Res ; 51(19): 10768-10781, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37739431

RESUMEN

Translational readthrough of UGA stop codons by selenocysteine-specific tRNA (tRNASec) enables the synthesis of selenoproteins. Seryl-tRNA synthetase (SerRS) charges tRNASec with serine, which is modified into selenocysteine and delivered to the ribosome by a designated elongation factor (eEFSec in eukaryotes). Here we found that components of the human selenocysteine incorporation machinery (SerRS, tRNASec, and eEFSec) also increased translational readthrough of non-selenocysteine genes, including VEGFA, to create C-terminally extended isoforms. SerRS recognizes target mRNAs through a stem-loop structure that resembles the variable loop of its cognate tRNAs. This function of SerRS depends on both its enzymatic activity and a vertebrate-specific domain. Through eCLIP-seq, we identified additional SerRS-interacting mRNAs as potential readthrough genes. Moreover, SerRS overexpression was sufficient to reverse premature termination caused by a pathogenic nonsense mutation. Our findings expand the repertoire of selenoprotein biosynthesis machinery and suggest an avenue for therapeutic targeting of nonsense mutations using endogenous factors.


Asunto(s)
Biosíntesis de Proteínas , Serina-ARNt Ligasa , Humanos , Codón sin Sentido , Codón de Terminación , ARN Mensajero/metabolismo , Selenocisteína/genética , Selenocisteína/metabolismo , Selenoproteínas/genética , Serina-ARNt Ligasa/genética
3.
Nucleic Acids Res ; 51(18): 10001-10010, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37638745

RESUMEN

Through their aminoacylation reactions, aminoacyl tRNA-synthetases (aaRS) establish the rules of the genetic code throughout all of nature. During their long evolution in eukaryotes, additional domains and splice variants were added to what is commonly a homodimeric or monomeric structure. These changes confer orthogonal functions in cellular activities that have recently been uncovered. An unusual exception to the familiar architecture of aaRSs is the heterodimeric metazoan mitochondrial SerRS. In contrast to domain additions or alternative splicing, here we show that heterodimeric metazoan mitochondrial SerRS arose from its homodimeric ancestor not by domain additions, but rather by collapse of an entire domain (in one subunit) and an active site ablation (in the other). The collapse/ablation retains aminoacylation activity while creating a new surface, which is necessary for its orthogonal function. The results highlight a new paradigm for repurposing a member of the ancient tRNA synthetase family.


Asunto(s)
Serina-ARNt Ligasa , Animales , Aminoacil-ARNt Sintetasas/metabolismo , Dominio Catalítico , Serina-ARNt Ligasa/química , Serina-ARNt Ligasa/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(48): e2212659119, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36409883

RESUMEN

Platelets play a role not only in hemostasis and thrombosis, but also in inflammation and innate immunity. We previously reported that an activated form of tyrosyl-tRNA synthetase (YRSACT) has an extratranslational activity that enhances megakaryopoiesis and platelet production in mice. Here, we report that YRSACT mimics inflammatory stress inducing a unique megakaryocyte (MK) population with stem cell (Sca1) and myeloid (F4/80) markers through a mechanism dependent on Toll-like receptor (TLR) activation and type I interferon (IFN-I) signaling. This mimicry of inflammatory stress by YRSACT was studied in mice infected by lymphocytic choriomeningitis virus (LCMV). Using Sca1/EGFP transgenic mice, we demonstrated that IFN-I induced by YRSACT or LCMV infection suppressed normal hematopoiesis while activating an alternative pathway of thrombopoiesis. Platelets of inflammatory origin (Sca1/EGFP+) were a relevant proportion of those circulating during recovery from thrombocytopenia. Analysis of these "inflammatory" MKs and platelets suggested their origin in myeloid/MK-biased hematopoietic stem cells (HSCs) that bypassed the classical MK-erythroid progenitor (MEP) pathway to replenish platelets and promote recovery from thrombocytopenia. Notably, inflammatory platelets displayed enhanced agonist-induced activation and procoagulant activities. Moreover, myeloid/MK-biased progenitors and MKs were mobilized from the bone marrow, as evidenced by their presence in the lung microvasculature within fibrin-containing microthrombi. Our results define the function of YRSACT in platelet generation and contribute to elucidate platelet alterations in number and function during viral infection.


Asunto(s)
Ataxias Espinocerebelosas , Trombocitopenia , Trombosis , Tirosina-ARNt Ligasa , Virosis , Ratones , Animales , Trombopoyesis , Ratones Transgénicos
5.
Neurobiol Dis ; 195: 106501, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38583640

RESUMEN

Charcot-Marie-Tooth disease (CMT) is a genetic peripheral neuropathy caused by mutations in many functionally diverse genes. The aminoacyl-tRNA synthetase (ARS) enzymes, which transfer amino acids to partner tRNAs for protein synthesis, represent the largest protein family genetically linked to CMT aetiology, suggesting pathomechanistic commonalities. Dominant intermediate CMT type C (DI-CMTC) is caused by YARS1 mutations driving a toxic gain-of-function in the encoded tyrosyl-tRNA synthetase (TyrRS), which is mediated by exposure of consensus neomorphic surfaces through conformational changes of the mutant protein. In this study, we first showed that human DI-CMTC-causing TyrRSE196K mis-interacts with the extracellular domain of the BDNF receptor TrkB, an aberrant association we have previously characterised for several mutant glycyl-tRNA synthetases linked to CMT type 2D (CMT2D). We then performed temporal neuromuscular assessments of YarsE196K mice modelling DI-CMT. We determined that YarsE196K homozygotes display a selective, age-dependent impairment in in vivo axonal transport of neurotrophin-containing signalling endosomes, phenocopying CMT2D mice. This impairment is replicated by injection of recombinant TyrRSE196K, but not TyrRSWT, into muscles of wild-type mice. Augmenting BDNF in DI-CMTC muscles, through injection of recombinant protein or muscle-specific gene therapy, resulted in complete axonal transport correction. Therefore, this work identifies a non-cell autonomous pathomechanism common to ARS-related neuropathies, and highlights the potential of boosting BDNF levels in muscles as a therapeutic strategy.


Asunto(s)
Transporte Axonal , Factor Neurotrófico Derivado del Encéfalo , Enfermedad de Charcot-Marie-Tooth , Modelos Animales de Enfermedad , Animales , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Ratones , Tirosina-ARNt Ligasa/genética , Tirosina-ARNt Ligasa/metabolismo , Humanos , Ratones Transgénicos , Músculo Esquelético/metabolismo , Receptor trkB/metabolismo , Receptor trkB/genética , Mutación
6.
Nature ; 564(7736): E37, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30459470

RESUMEN

In Fig. 1b of this Article, a U was inadvertently inserted after G15 in the D loop. The original Article has not been corrected.

7.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33753480

RESUMEN

Through dominant mutations, aminoacyl-tRNA synthetases constitute the largest protein family linked to Charcot-Marie-Tooth disease (CMT). An example is CMT subtype 2N (CMT2N), caused by individual mutations spread out in AlaRS, including three in the aminoacylation domain, thereby suggesting a role for a tRNA-charging defect. However, here we found that two are aminoacylation defective but that the most widely distributed R329H is normal as a purified protein in vitro and in unfractionated patient cell samples. Remarkably, in contrast to wild-type (WT) AlaRS, all three mutant proteins gained the ability to interact with neuropilin 1 (Nrp1), the receptor previously linked to CMT pathogenesis in GlyRS. The aberrant AlaRS-Nrp1 interaction is further confirmed in patient samples carrying the R329H mutation. However, CMT2N mutations outside the aminoacylation domain do not induce the Nrp1 interaction. Detailed biochemical and biophysical investigations, including X-ray crystallography, small-angle X-ray scattering, hydrogen-deuterium exchange (HDX), switchSENSE hydrodynamic diameter determinations, and protease digestions reveal a mutation-induced structural loosening of the aminoacylation domain that correlates with the Nrp1 interaction. The b1b2 domains of Nrp1 are responsible for the interaction with R329H AlaRS. The results suggest Nrp1 is more broadly associated with CMT-associated members of the tRNA synthetase family. Moreover, we revealed a distinct structural loosening effect induced by a mutation in the editing domain and a lack of conformational impact with C-Ala domain mutations, indicating mutations in the same protein may cause neuropathy through different mechanisms. Our results show that, as with other CMT-associated tRNA synthetases, aminoacylation per se is not relevant to the pathology.


Asunto(s)
Alanina-ARNt Ligasa/metabolismo , Enfermedad de Charcot-Marie-Tooth/genética , Neuropilina-1/metabolismo , Alanina-ARNt Ligasa/química , Alanina-ARNt Ligasa/genética , Aminoacilación/genética , Células Cultivadas , Enfermedad de Charcot-Marie-Tooth/sangre , Cristalografía por Rayos X , Medición de Intercambio de Deuterio , Humanos , Linfocitos , Mutación , Neuropilina-1/genética , Cultivo Primario de Células , Unión Proteica/genética , Dominios Proteicos/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , Dispersión del Ángulo Pequeño
8.
PLoS Biol ; 18(12): e3000991, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33351793

RESUMEN

Hypoxia-induced angiogenesis maintains tissue oxygen supply and protects against ischemia but also enhances tumor progression and malignancy. This is mediated through activation of transcription factors like hypoxia-inducible factor 1 (HIF-1) and c-Myc, yet the impact of hypoxia on negative regulators of angiogenesis is unknown. During vascular development, seryl-tRNA synthetase (SerRS) regulates angiogenesis through a novel mechanism by counteracting c-Myc and transcriptionally repressing vascular endothelial growth factor A (VEGFA) expression. Here, we reveal that the transcriptional repressor role of SerRS is inactivated under hypoxia through phosphorylation by ataxia telangiectasia mutated (ATM) and ataxia telangiectasia mutated and RAD3-related (ATR) at Ser101 and Ser241 to attenuate its DNA binding capacity. In zebrafish, SerRSS101D/S241D, a phosphorylation-mimicry mutant, cannot suppress VEGFA expression to support normal vascular development. Moreover, expression of SerRSS101A/S241A, a phosphorylation-deficient and constitutively active mutant, prevents hypoxia-induced binding of c-Myc and HIF-1 to the VEGFA promoter, and activation of VEGFA expression. Consistently, SerRSS101A/S241A strongly inhibits normal and tumor-derived angiogenesis in mice. Therefore, we reveal a key step regulating hypoxic angiogenesis and highlight the importance of nuclear SerRS in post-developmental angiogenesis regulation in addition to vascular development. The role of nuclear SerRS in inhibiting both c-Myc and HIF-1 may provide therapeutic opportunities to correct dysregulation of angiogenesis in pathological settings.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Neovascularización Patológica/genética , Serina-ARNt Ligasa/metabolismo , Inductores de la Angiogénesis , Animales , Animales Modificados Genéticamente , Ataxia Telangiectasia/genética , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/fisiología , Línea Celular , Femenino , Células HEK293 , Humanos , Hipoxia/metabolismo , Hipoxia/fisiopatología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ratones , Ratones Desnudos , Fosforilación , Serina-ARNt Ligasa/fisiología , Factores de Transcripción/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
9.
Nucleic Acids Res ; 49(17): 10106-10119, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34390350

RESUMEN

AaRSs (aminoacyl-tRNA synthetases) group into two ten-member classes throughout evolution, with unique active site architectures defining each class. Most are monomers or homodimers but, for no apparent reason, many bacterial GlyRSs are heterotetramers consisting of two catalytic α-subunits and two tRNA-binding ß-subunits. The heterotetrameric GlyRS from Escherichia coli (EcGlyRS) was historically tested whether its α- and ß-polypeptides, which are encoded by a single mRNA with a gap of three in-frame codons, are replaceable by a single chain. Here, an unprecedented X-shaped structure of EcGlyRS shows wide separation of the abutting chain termini seen in the coding sequences, suggesting strong pressure to avoid a single polypeptide format. The structure of the five-domain ß-subunit is unique across all aaRSs in current databases, and structural analyses suggest these domains play different functions on α-subunit binding, ATP coordination and tRNA recognition. Moreover, the X-shaped architecture of EcGlyRS largely fits with a model for how two classes of tRNA synthetases arose, according to whether enzymes from opposite classes can simultaneously co-dock onto separate faces of the same tRNA acceptor stem. While heterotetrameric GlyRS remains the last structurally uncharacterized member of aaRSs, our study contributes to a better understanding of this ancient and essential enzyme family.


Asunto(s)
Dominio Catalítico/genética , Escherichia coli/genética , Glicina-ARNt Ligasa/genética , ARN de Transferencia de Glicerina/química , Adenosina Trifosfato/metabolismo , Cristalografía por Rayos X , Glicina/química , Modelos Moleculares , ARN de Transferencia de Glicerina/genética
10.
Nat Rev Mol Cell Biol ; 11(9): 668-74, 2010 09.
Artículo en Inglés | MEDLINE | ID: mdl-20700144

RESUMEN

Over the course of evolution, eukaryotic aminoacyl-tRNA synthetases (aaRSs) progressively incorporated domains and motifs that have no essential connection to aminoacylation reactions. Their accretive addition to virtually all aaRSs correlates with the progressive evolution and complexity of eukaryotes. Based on recent experimental findings focused on a few of these additions and analysis of the aaRS proteome, we propose that they are markers for aaRS-associated functions beyond translation.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Biosíntesis de Proteínas , Aminoacil-ARNt Sintetasas/genética , Animales , Eucariontes/enzimología , Eucariontes/genética , Evolución Molecular , Humanos
11.
Mol Cell ; 56(2): 323-332, 2014 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-25284223

RESUMEN

Tyrosyl-tRNA synthetase (TyrRS) is known for its essential aminoacylation function in protein synthesis. Here we report a function for TyrRS in DNA damage protection. We found that oxidative stress, which often downregulates protein synthesis, induces TyrRS to rapidly translocate from the cytosol to the nucleus. We also found that angiogenin mediates or potentiates this stress-induced translocalization. The nuclear-localized TyrRS activates transcription factor E2F1 to upregulate the expression of DNA damage repair genes such as BRCA1 and RAD51. The activation is achieved through direct interaction of TyrRS with TRIM28 to sequester this vertebrate-specific epigenetic repressor and its associated HDAC1 from deacetylating and suppressing E2F1. Remarkably, overexpression of TyrRS strongly protects against UV-induced DNA double-strand breaks in zebrafish, whereas restricting TyrRS nuclear entry completely abolishes the protection. Therefore, oxidative stress triggers an essential cytoplasmic enzyme used for protein synthesis to translocate to the nucleus to protect against DNA damage.


Asunto(s)
Núcleo Celular/metabolismo , Daño del ADN/genética , Reparación del ADN/genética , Estrés Oxidativo/genética , Tirosina-ARNt Ligasa/metabolismo , Transporte Activo de Núcleo Celular/genética , Animales , Proteína BRCA1/biosíntesis , Línea Celular Tumoral , Núcleo Celular/genética , Roturas del ADN de Doble Cadena , Factor de Transcripción E2F1/metabolismo , Activación Enzimática , Células HEK293 , Células HeLa , Histona Desacetilasa 1/antagonistas & inhibidores , Histona Desacetilasa 1/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Ácidos Hidroxámicos/farmacología , Morfolinos/genética , Estructura Terciaria de Proteína , Recombinasa Rad51/biosíntesis , Proteínas Represoras/metabolismo , Ribonucleasa Pancreática/metabolismo , Proteína 28 que Contiene Motivos Tripartito , Tirosina-ARNt Ligasa/biosíntesis , Tirosina-ARNt Ligasa/genética , Regulación hacia Arriba , Pez Cebra
12.
Nucleic Acids Res ; 48(12): 6445-6457, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32484512

RESUMEN

The accuracy in pairing tRNAs with correct amino acids by aminoacyl-tRNA synthetases (aaRSs) dictates the fidelity of translation. To ensure fidelity, multiple aaRSs developed editing functions that remove a wrong amino acid from tRNA before it reaches the ribosome. However, no specific mechanism within an aaRS is known to handle the scenario where a cognate amino acid is mischarged onto a wrong tRNA, as exemplified by AlaRS mischarging alanine to G4:U69-containing tRNAThr. Here, we report that the mischargeable G4:U69-containing tRNAThr are strictly conserved in vertebrates and are ubiquitously and abundantly expressed in mammalian cells and tissues. Although these tRNAs are efficiently mischarged, no corresponding Thr-to-Ala mistranslation is detectable. Mistranslation is prevented by a robust proofreading activity of ThrRS towards Ala-tRNAThr. Therefore, while wrong amino acids are corrected within an aaRS, a wrong tRNA is handled in trans by an aaRS cognate to the mischarged tRNA species. Interestingly, although Ala-tRNAThr mischarging is not known to occur in bacteria, Escherichia coli ThrRS also possesses robust cross-editing ability. We propose that the cross-editing activity of ThrRS is evolutionarily conserved and that this intrinsic activity allows G4:U69-containing tRNAThr to emerge and be preserved in vertebrates to have alternative functions without compromising translational fidelity.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Edición de ARN , ARN de Transferencia/metabolismo , Alanina/genética , Animales , Evolución Molecular , Células HEK293 , Humanos , ARN de Transferencia/genética , Treonina/genética , Vertebrados/genética
13.
Proc Natl Acad Sci U S A ; 116(39): 19440-19448, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31501329

RESUMEN

Aminoacyl-transfer RNA (tRNA) synthetases (aaRSs) are the largest protein family causatively linked to neurodegenerative Charcot-Marie-Tooth (CMT) disease. Dominant mutations cause the disease, and studies of CMT disease-causing mutant glycyl-tRNA synthetase (GlyRS) and tyrosyl-tRNA synthetase (TyrRS) showed their mutations create neomorphic structures consistent with a gain-of-function mechanism. In contrast, based on a haploid yeast model, loss of aminoacylation function was reported for CMT disease mutants in histidyl-tRNA synthetase (HisRS). However, neither that nor prior work of any CMT disease-causing aaRS investigated the aminoacylation status of tRNAs in the cellular milieu of actual patients. Using an assay that interrogated aminoacylation levels in patient cells, we investigated a HisRS-linked CMT disease family with the most severe disease phenotype. Strikingly, no difference in charged tRNA levels between normal and diseased family members was found. In confirmation, recombinant versions of 4 other HisRS CMT disease-causing mutants showed no correlation between activity loss in vitro and severity of phenotype in vivo. Indeed, a mutation having the most detrimental impact on activity was associated with a mild disease phenotype. In further work, using 3 independent biophysical analyses, structural opening (relaxation) of mutant HisRSs at the dimer interface best correlated with disease severity. In fact, the HisRS mutation in the severely afflicted patient family caused the largest degree of structural relaxation. These data suggest that HisRS-linked CMT disease arises from open conformation-induced mechanisms distinct from loss of aminoacylation.


Asunto(s)
Aminoacil-ARNt Sintetasas/genética , Enfermedad de Charcot-Marie-Tooth/genética , Histidina-ARNt Ligasa/genética , Secuencia de Aminoácidos , Aminoacil-ARNt Sintetasas/metabolismo , Aminoacilación/genética , Axones , Enfermedad de Charcot-Marie-Tooth/metabolismo , Mutación con Ganancia de Función/genética , Histidina-ARNt Ligasa/metabolismo , Humanos , Mutación , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Relación Estructura-Actividad , Tirosina-ARNt Ligasa/genética , Tirosina-ARNt Ligasa/metabolismo
14.
Am J Hum Genet ; 103(1): 100-114, 2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-29979980

RESUMEN

The tRNA synthetases catalyze the first step of protein synthesis and have increasingly been studied for their nuclear and extra-cellular ex-translational activities. Human genetic conditions such as Charcot-Marie-Tooth have been attributed to dominant gain-of-function mutations in some tRNA synthetases. Unlike dominantly inherited gain-of-function mutations, recessive loss-of-function mutations can potentially elucidate ex-translational activities. We present here five individuals from four families with a multi-system disease associated with bi-allelic mutations in FARSB that encodes the beta chain of the alpha2beta2 phenylalanine-tRNA synthetase (FARS). Collectively, the mutant alleles encompass a 5'-splice junction non-coding variant (SJV) and six missense variants, one of which is shared by unrelated individuals. The clinical condition is characterized by interstitial lung disease, cerebral aneurysms and brain calcifications, and cirrhosis. For the SJV, we confirmed exon skipping leading to a frameshift associated with noncatalytic activity. While the bi-allelic combination of the SJV with a p.Arg305Gln missense mutation in two individuals led to severe disease, cells from neither the asymptomatic heterozygous carriers nor the compound heterozygous affected individual had any defect in protein synthesis. These results support a disease mechanism independent of tRNA synthetase activities in protein translation and suggest that this FARS activity is essential for normal function in multiple organs.


Asunto(s)
Aminoacil-ARNt Sintetasas/genética , Enfermedades Pulmonares/genética , Mutación/genética , Adolescente , Alelos , Enfermedad de Charcot-Marie-Tooth/genética , Preescolar , Femenino , Genes Recesivos/genética , Heterocigoto , Humanos , Lactante , Masculino , Biosíntesis de Proteínas/genética
15.
RNA Biol ; 18(11): 1501-1511, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33317386

RESUMEN

Among the 20 cytoplasmic aminoacyl-tRNA synthetases (aaRSs), alanyl-tRNA synthetase (AlaRS) has unique features. AlaRS is the only aaRS that exclusively recognizes a single G3:U70 wobble base pair in the acceptor stem of tRNA, which serves as the identity element for both the synthetic and the proofreading activities of the synthetase. The recognition is relaxed during evolution and eukaryotic AlaRS can mis-aminoacylate noncognate tRNAs with a G4:U69 base pair seemingly as a deliberate gain of function for unknown reasons. Unlike other class II aaRSs, dimerization of AlaRS is not necessarily required for aminoacylation possibly due to functional compensations from the C-terminal domain (C-Ala). In contrast to other 19 cytoplasmic aaRSs that append additional domains or motifs to acquire new functions during evolution, the functional expansion of AlaRS is likely achieved through transformations of the existing C-Ala. Given both essential canonical and diverse non-canonical roles of AlaRS, dysfunction of AlaRS leads to neurodegenerative disorders in human and various pathological phenotypes in mouse models. In this review, the uniqueness of AlaRS in both physiological and pathological events is systematically discussed, with a particular focus on its novel functions gained in evolution.


Asunto(s)
Alanina-ARNt Ligasa/metabolismo , Aminoacilación , Enfermedades Neurodegenerativas/patología , Animales , Humanos , Enfermedades Neurodegenerativas/enzimología
16.
Nature ; 526(7575): 710-4, 2015 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-26503042

RESUMEN

Selective neuronal loss is a hallmark of neurodegenerative diseases, which, counterintuitively, are often caused by mutations in widely expressed genes. Charcot-Marie-Tooth (CMT) diseases are the most common hereditary peripheral neuropathies, for which there are no effective therapies. A subtype of these diseases--CMT type 2D (CMT2D)--is caused by dominant mutations in GARS, encoding the ubiquitously expressed enzyme glycyl-transfer RNA (tRNA) synthetase (GlyRS). Despite the broad requirement of GlyRS for protein biosynthesis in all cells, mutations in this gene cause a selective degeneration of peripheral axons, leading to deficits in distal motor function. How mutations in GlyRS (GlyRS(CMT2D)) are linked to motor neuron vulnerability has remained elusive. Here we report that GlyRS(CMT2D) acquires a neomorphic binding activity that directly antagonizes an essential signalling pathway for motor neuron survival. We find that CMT2D mutations alter the conformation of GlyRS, enabling GlyRS(CMT2D) to bind the neuropilin 1 (Nrp1) receptor. This aberrant interaction competitively interferes with the binding of the cognate ligand vascular endothelial growth factor (VEGF) to Nrp1. Genetic reduction of Nrp1 in mice worsens CMT2D symptoms, whereas enhanced expression of VEGF improves motor function. These findings link the selective pathology of CMT2D to the neomorphic binding activity of GlyRS(CMT2D) that antagonizes the VEGF-Nrp1 interaction, and indicate that the VEGF-Nrp1 signalling axis is an actionable target for treating CMT2D.


Asunto(s)
Unión Competitiva , Enfermedad de Charcot-Marie-Tooth/metabolismo , Glicina-ARNt Ligasa/metabolismo , Animales , Axones/enzimología , Axones/metabolismo , Axones/patología , Línea Celular , Supervivencia Celular , Enfermedad de Charcot-Marie-Tooth/tratamiento farmacológico , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/patología , Femenino , Glicina-ARNt Ligasa/química , Glicina-ARNt Ligasa/genética , Ligandos , Masculino , Ratones , Modelos Moleculares , Neuronas Motoras/enzimología , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Destreza Motora/efectos de los fármacos , Mutación/genética , Neuropilina-1/deficiencia , Neuropilina-1/genética , Neuropilina-1/metabolismo , Unión Proteica , Multimerización de Proteína , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/farmacología , Factor A de Crecimiento Endotelial Vascular/uso terapéutico
17.
Mol Cell ; 49(1): 30-42, 2013 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-23159739

RESUMEN

Lysyl-tRNA synthetase (LysRS), a component of the translation apparatus, is released from the cytoplasmic multi-tRNA synthetase complex (MSC) to activate the transcription factor MITF in stimulated mast cells through undefined mechanisms. Here we show that Ser207 phosphorylation provokes a new conformer of LysRS that inactivates its translational function but activates its transcriptional function. The crystal structure of an MSC subcomplex established that LysRS is held in the MSC by binding to the N terminus of the scaffold protein p38/AIMP2. Phosphorylation-created steric clashes at the LysRS domain interface disrupt its binding grooves for p38/AIMP2, releasing LysRS and provoking its nuclear translocation. This alteration also exposes the C-terminal domain of LysRS to bind to MITF and triggers LysRS-directed production of the second messenger Ap(4)A that activates MITF. Thus our results establish that a single conformational change triggered by phosphorylation leads to multiple effects driving an exclusive switch of LysRS function from translation to transcription.


Asunto(s)
Lisina-ARNt Ligasa/química , Biosíntesis de Proteínas , Transcripción Genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Línea Celular , Secuencia Conservada , Cristalografía por Rayos X , Fosfatos de Dinucleósidos/metabolismo , Humanos , Lisina-ARNt Ligasa/genética , Lisina-ARNt Ligasa/metabolismo , Mastocitos/enzimología , Mastocitos/metabolismo , Factor de Transcripción Asociado a Microftalmía , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Nucleares , Fosforilación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Ratas , Sistemas de Mensajero Secundario
18.
Proc Natl Acad Sci U S A ; 115(29): 7527-7532, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29967150

RESUMEN

Throughout three domains of life, alanyl-tRNA synthetases (AlaRSs) recognize a G3:U70 base pair in the acceptor stem of tRNAAla as the major identity determinant of tRNAAla The crystal structure of the archaeon Archaeoglobus fulgidus AlaRS in complex with tRNAAla provided the basis for G3:U70 recognition with residues (Asp and Asn) that are conserved in the three domains [Naganuma M, et al. (2014) Nature 510:507-511]. The recognition mode is unprecedented, with specific accommodation of the dyad asymmetry of the G:U wobble pair and exclusion of the dyad symmetry of a Watson-Crick pair. With this conserved mode, specificity is based more on "fit" than on direct recognition of specific atomic groups. Here, we show that, in contrast to the archaeal complex, the Escherichia coli enzyme uses direct positive (energetically favorable) minor groove recognition of the unpaired 2-amino of G3 by Asp and repulsion of a competing base pair by Asn. Strikingly, mutations that disrupted positive recognition by the E. coli enzyme had little or no effect on G:U recognition by the human enzyme. Alternatively, Homo sapiens AlaRS selects G:U without positive recognition and uses Asp instead to repel a competitor. Thus, the widely conserved Asp-plus-Asn architecture of AlaRSs can select G:U in a straightforward (bacteria) or two different unconventional (eukarya/archaea) ways. The adoption of different modes for recognition of a widely conserved G:U pair in alanine tRNAs suggests an early and insistent role for G:U in the development of the genetic code.


Asunto(s)
Alanina-ARNt Ligasa/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Modelos Moleculares , Motivos de Nucleótidos , ARN de Transferencia/química , Alanina-ARNt Ligasa/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Humanos , Mutación , ARN de Transferencia/genética
19.
Proc Natl Acad Sci U S A ; 115(35): E8228-E8235, 2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30104364

RESUMEN

New mechanisms behind blood cell formation continue to be uncovered, with therapeutic approaches for hematological diseases being of great interest. Here we report an enzyme in protein synthesis, known for cell-based activities beyond translation, is a factor inducing megakaryocyte-biased hematopoiesis, most likely under stress conditions. We show an activated form of tyrosyl-tRNA synthetase (YRSACT), prepared either by rationally designed mutagenesis or alternative splicing, induces expansion of a previously unrecognized high-ploidy Sca-1+ megakaryocyte population capable of accelerating platelet replenishment after depletion. Moreover, YRSACT targets monocytic cells to induce secretion of transacting cytokines that enhance megakaryocyte expansion stimulating the Toll-like receptor/MyD88 pathway. Platelet replenishment by YRSACT is independent of thrombopoietin (TPO), as evidenced by expansion of the megakaryocytes from induced pluripotent stem cell-derived hematopoietic stem cells from a patient deficient in TPO signaling. We suggest megakaryocyte-biased hematopoiesis induced by YRSACT offers new approaches for treating thrombocytopenia, boosting yields from cell-culture production of platelet concentrates for transfusion, and bridging therapy for hematopoietic stem cell transplantation.


Asunto(s)
Plaquetas/metabolismo , Hematopoyesis , Megacariocitos/metabolismo , Poliploidía , Trombocitopenia/metabolismo , Tirosina-ARNt Ligasa/metabolismo , Plaquetas/patología , Técnicas de Cultivo de Célula , Células Cultivadas , Femenino , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Masculino , Megacariocitos/patología , Transducción de Señal , Trombocitopenia/patología , Trombopoyetina/metabolismo
20.
J Biol Chem ; 294(14): 5321-5339, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30643024

RESUMEN

Aminoacyl-tRNA synthetases (aaRSs) are essential enzymes that catalyze the first reaction in protein biosynthesis, namely the charging of transfer RNAs (tRNAs) with their cognate amino acids. aaRSs have been increasingly implicated in dominantly and recessively inherited human diseases. The most common aaRS-associated monogenic disorder is the incurable neurodegenerative disease Charcot-Marie-Tooth neuropathy (CMT), caused by dominant mono-allelic mutations in aaRSs. With six currently known members (GlyRS, TyrRS, AlaRS, HisRS, TrpRS, and MetRS), aaRSs represent the largest protein family implicated in CMT etiology. After the initial discovery linking aaRSs to CMT, the field has progressed from understanding whether impaired tRNA charging is a critical component of this disease to elucidating the specific pathways affected by CMT-causing mutations in aaRSs. Although many aaRS CMT mutants result in loss of tRNA aminoacylation function, animal genetics studies demonstrated that dominant mutations in GlyRS cause CMT through toxic gain-of-function effects, which also may apply to other aaRS-linked CMT subtypes. The CMT-causing mechanism is likely to be multifactorial and involves multiple cellular compartments, including the nucleus and the extracellular space, where the normal WT enzymes also appear. Thus, the association of aaRSs with neuropathy is relevant to discoveries indicating that aaRSs also have nonenzymatic regulatory functions that coordinate protein synthesis with other biological processes. Through genetic, functional, and structural analyses, commonalities among different mutations and different aaRS-linked CMT subtypes have begun to emerge, providing insights into the nonenzymatic functions of aaRSs and the pathogenesis of aaRS-linked CMT to guide therapeutic development to treat this disease.


Asunto(s)
Aminoacil-ARNt Sintetasas , Núcleo Celular , Enfermedad de Charcot-Marie-Tooth , Biosíntesis de Proteínas , ARN de Transferencia , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Animales , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/patología , Enfermedad de Charcot-Marie-Tooth/enzimología , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/patología , Mutación con Ganancia de Función , Humanos , ARN de Transferencia/genética , ARN de Transferencia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA