Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38989576

RESUMEN

BACKGROUND: Patients with JAK2V617F-positive myeloproliferative neoplasms (MPNs) and clonal hematopoiesis of indeterminate potential face a significantly elevated risk of cardiovascular diseases. Endothelial cells carrying the JAK2V617F mutation have been detected in many patients with MPN. In this study, we investigated the molecular basis for the high incidence of cardiovascular complications in patients with MPN. METHODS: We investigated the impact of endothelial JAK2V617F mutation on cardiovascular disease development using both transgenic murine models and MPN patient-derived induced pluripotent stem cell lines. RESULTS: Our investigations revealed that JAK2V617F mutant endothelial cells promote cardiovascular diseases under stress, which is associated with endothelial-to-mesenchymal transition and endothelial dysfunction. Importantly, we discovered that inhibiting the endothelial TPO (thrombopoietin) receptor MPL suppressed JAK2V617F-induced endothelial-to-mesenchymal transition and prevented cardiovascular dysfunction caused by mutant endothelial cells. Notably, the endothelial MPL receptor is not essential for the normal physiological regulation of blood cell counts and cardiac function. CONCLUSIONS: JAK2V617F mutant endothelial cells play a critical role in the development of cardiovascular diseases in JAK2V617F-positive MPNs, and endothelial MPL could be a promising therapeutic target for preventing or ameliorating cardiovascular complications in these patients.

2.
Brief Bioinform ; 23(3)2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35352098

RESUMEN

Synthetic lethality (SL) occurs between two genes when the inactivation of either gene alone has no effect on cell survival but the inactivation of both genes results in cell death. SL-based therapy has become one of the most promising targeted cancer therapies in the last decade as PARP inhibitors achieve great success in the clinic. The key point to exploiting SL-based cancer therapy is the identification of robust SL pairs. Although many wet-lab-based methods have been developed to screen SL pairs, known SL pairs are less than 0.1% of all potential pairs due to large number of human gene combinations. Computational prediction methods complement wet-lab-based methods to effectively reduce the search space of SL pairs. In this paper, we review the recent applications of computational methods and commonly used databases for SL prediction. First, we introduce the concept of SL and its screening methods. Second, various SL-related data resources are summarized. Then, computational methods including statistical-based methods, network-based methods, classical machine learning methods and deep learning methods for SL prediction are summarized. In particular, we elaborate on the negative sampling methods applied in these models. Next, representative tools for SL prediction are introduced. Finally, the challenges and future work for SL prediction are discussed.


Asunto(s)
Neoplasias , Mutaciones Letales Sintéticas , Bases de Datos Factuales , Humanos , Aprendizaje Automático , Neoplasias/genética
3.
Mol Cell Biochem ; 479(7): 1553-1570, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38856795

RESUMEN

Epigenetics encompasses reversible and heritable chemical modifications of non-nuclear DNA sequences, including DNA and RNA methylation, histone modifications, non-coding RNA modifications, and chromatin rearrangements. In addition to well-studied DNA and histone methylation, RNA methylation has emerged as a hot topic in biological sciences over the past decade. N6-methyladenosine (m6A) is the most common and abundant modification in eukaryotic mRNA, affecting all RNA stages, including transcription, translation, and degradation. Advances in high-throughput sequencing technologies made it feasible to identify the chemical basis and biological functions of m6A RNA. Dysregulation of m6A levels and associated modifying proteins can both inhibit and promote cancer, highlighting the importance of the tumor microenvironment in diverse biological processes. Gastrointestinal tract cancers, including gastric, colorectal, and pancreatic cancers, are among the most common and deadly malignancies in humans. Growing evidence suggests a close association between m6A levels and the progression of gastrointestinal tumors. Global m6A modification levels are substantially modified in gastrointestinal tumor tissues and cell lines compared to healthy tissues and cells, possibly influencing various biological behaviors such as tumor cell proliferation, invasion, metastasis, and drug resistance. Exploring the diagnostic and therapeutic potential of m6A-related proteins is critical from a clinical standpoint. Developing more specific and effective m6A modulators offers new options for treating these tumors and deeper insights into gastrointestinal tract cancers.


Asunto(s)
Adenosina , Neoplasias Gastrointestinales , Humanos , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/genética , Neoplasias Gastrointestinales/genética , Neoplasias Gastrointestinales/patología , Neoplasias Gastrointestinales/metabolismo , ARN Neoplásico/genética , ARN Neoplásico/metabolismo , Epigénesis Genética , Metilación
4.
Fish Shellfish Immunol ; 145: 109302, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38128680

RESUMEN

Feeding high-fat (HF) diets has been shown to cause hepatic and intestinal impairment in fish species, but the mode of action, especially the pathways involved in the intestine, has not been determined yet. In this study, the effects of resveratrol (RES) supplementation on the intestinal structure, microbial flora, and fat metabolism in red tilapia (Oreochromis niloticus) were determined. The results showed RES maintained the structural integrity of the intestine and significantly increased the number of goblet cells in the midgut. RES significantly induced interferon (IL)-1ß, IL-6, IL-10, and tumor necrosis factor (TNF)-α, serumal and fecal trimetlylamine oxide (TMAO) and lipopolysaccharides (LPS), intestinal acetic acid levels. However, the concentrations of bound bile acids increased in HF-fed red tilapia. Atp5fa1 and Pafah1b3 significantly increased, Pmt and Acss2 significantly decreased, respectively, with RES supplementation, which was alleviated and retained at the same level in the selisistat (EX527) group. While for transcriptome and proteomics results, RES was found to promote fatty acid ß-oxidation and arachidonic acid metabolism associated with the peroxisome proliferator-activated receptor (PPAR) signaling pathway. The next validation experiment showed some genes related to apoptosis and fatty acid metabolism pathways were altered by RES supplementation. Namely, sn6, loc100702698, new_14481, and prkaa1 were upregulated, while ffrs1, ap3s1, and loc100705861 were downregulated. RES significantly increased Planctomycetes and Verrucomicrobia while decreased Moonvirus, Citrobacter, and Pseudomonas. Akkermansia and Fusobacterium significantly increased and Aeromonas significantly decreased. Thus, unsaturated fatty acid biosynthesis significantly increased and carbohydrate/energy metabolism decreased. To conclude, RES enabled the body to complete fatty acid ß-oxidation and arachidonic acid metabolism, whereas the addition of inhibitors increased the expression of the phagosome transcriptome and reduced fatty acid ß-oxidative metabolism.


Asunto(s)
Cíclidos , Tilapia , Animales , Tilapia/metabolismo , Cíclidos/metabolismo , Dieta Alta en Grasa , Resveratrol/metabolismo , Metabolismo de los Lípidos , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Receptores Activados del Proliferador del Peroxisoma/farmacología , Intestinos , Transducción de Señal , Ácidos Grasos/metabolismo , Ácidos Araquidónicos/metabolismo , Ácidos Araquidónicos/farmacología , Dieta , Suplementos Dietéticos , Alimentación Animal/análisis
5.
Environ Sci Technol ; 58(10): 4571-4580, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38430186

RESUMEN

Exposure to atmospheric particulate matter (PM) has been found to accelerate the onset of neurological disorders via the induction of detrimental neuroinflammatory responses. To reveal how astrocytes respond to urban atmospheric PM stimulation, a commercially available standard reference material (SRM1648a) was tested in this study on the activation of rat cortical astrocytes. The results showed that SRM1648a stimulation induced both A1 and A2 phenotypes in astrocytes, as characterized by the exposure concentration-dependent increases in Fkbp5, Sphk1, S100a10, and Il6 mRNA levels. Studying the functional alterations of astrocytes indicated that the neurotrophic factors of Gdnf and Ngf were transcriptionally upregulated due to astrocytic A2-type activation. SRM1648a also promoted autonomous motility of astrocytes and elevated the expressions of chemokines. The aryl hydrocarbon receptor (AhR) agonistic components, such as polycyclic aromatic hydrocarbons (PAHs), were recognized to greatly contribute to SRM1648a-induced effects on astrocytes, which was confirmed by the attenuation of PM-disturbed astrocytic effects via AhR blockage. This study, for the first time, uncovered the direct regulation of urban atmospheric PM on astrocytic activation and function and traced the containing bioactive components (e.g., PAHs) with AhR agonistic activity. The findings provided new knowledge on understanding the ambiguous neurological disturbance from ambient fine PM pollution.


Asunto(s)
Material Particulado , Hidrocarburos Policíclicos Aromáticos , Ratas , Animales , Material Particulado/toxicidad , Fenotipo , Receptores de Hidrocarburo de Aril/genética
6.
Environ Sci Technol ; 58(23): 9925-9944, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38820315

RESUMEN

Organic contaminants are ubiquitous in the environment, with mounting evidence unequivocally connecting them to aquatic toxicity, illness, and increased mortality, underscoring their substantial impacts on ecological security and environmental health. The intricate composition of sample mixtures and uncertain physicochemical features of potential toxic substances pose challenges to identify key toxicants in environmental samples. Effect-directed analysis (EDA), establishing a connection between key toxicants found in environmental samples and associated hazards, enables the identification of toxicants that can streamline research efforts and inform management action. Nevertheless, the advancement of EDA is constrained by the following factors: inadequate extraction and fractionation of environmental samples, limited bioassay endpoints and unknown linkage to higher order impacts, limited coverage of chemical analysis (i.e., high-resolution mass spectrometry, HRMS), and lacking effective linkage between bioassays and chemical analysis. This review proposes five key advancements to enhance the efficiency of EDA in addressing these challenges: (1) multiple adsorbents for comprehensive coverage of chemical extraction, (2) high-resolution microfractionation and multidimensional fractionation for refined fractionation, (3) robust in vivo/vitro bioassays and omics, (4) high-performance configurations for HRMS analysis, and (5) chemical-, data-, and knowledge-driven approaches for streamlined toxicant identification and validation. We envision that future EDA will integrate big data and artificial intelligence based on the development of quantitative omics, cutting-edge multidimensional microfractionation, and ultraperformance MS to identify environmental hazard factors, serving for broader environmental governance.


Asunto(s)
Monitoreo del Ambiente , Monitoreo del Ambiente/métodos , Contaminantes Ambientales , Fraccionamiento Químico
7.
Environ Sci Technol ; 58(23): 10309-10321, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38795035

RESUMEN

The global practice of reusing sewage sludge in agriculture and its landfill disposal reintroduces environmental contaminants, posing risks to human and ecological health. This study screened sewage sludge from 30 Chinese cities for androgen receptor (AR) disruptors, utilizing a disruptor list from the Toxicology in the 21st Century program (Tox21), and identified 25 agonists and 33 antagonists across diverse use categories. Predominantly, natural products 5α-dihydrotestosterone and thymidine emerged as agonists, whereas the industrial intermediate caprolactam was the principal antagonist. In-house bioassays for identified disruptors displayed good alignment with Tox21 potency data, validating employing Tox21 toxicity data for theoretical toxicity estimations. Potency calculations revealed 5α-dihydrotestosterone and two pharmaceuticals (17ß-trenbolone and testosterone isocaproate) as the most potent AR agonists and three dyes (rhodamine 6G, Victoria blue BO, and gentian violet) as antagonists. Theoretical effect contribution evaluations prioritized 5α-dihydrotestosterone and testosterone isocaproate as high-risk AR agonists and caprolactam, rhodamine 6G, and 8-hydroxyquinoline (as a biocide and a preservative) as key antagonists. Notably, 16 agonists and 20 antagonists were newly reported in the sludge, many exhibiting significant detection frequencies, concentrations, and/or toxicities, demanding future scrutiny. Our study presents an efficient strategy for estimating environmental sample toxicity and identifying key toxicants, thereby supporting the development of appropriate sludge management strategies.


Asunto(s)
Receptores Androgénicos , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Humanos , China , Receptores Androgénicos/metabolismo
8.
Chem Soc Rev ; 52(16): 5388-5484, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37455613

RESUMEN

The polymorphism of phosphorus-based materials has garnered much research interest, and the variable chemical bonding structures give rise to a variety of micro and nanostructures. Among the different types of materials containing phosphorus, elemental phosphorus materials (EPMs) constitute the foundation for the synthesis of related compounds. EPMs are experiencing a renaissance in the post-graphene era, thanks to recent advancements in the scaling-down of black phosphorus, amorphous red phosphorus, violet phosphorus, and fibrous phosphorus and consequently, diverse classes of low-dimensional sheets, ribbons, and dots of EPMs with intriguing properties have been produced. The nanostructured EPMs featuring tunable bandgaps, moderate carrier mobility, and excellent optical absorption have shown great potential in energy conversion, energy storage, and environmental remediation. It is thus important to have a good understanding of the differences and interrelationships among diverse EPMs, their intrinsic physical and chemical properties, the synthesis of specific structures, and the selection of suitable nanostructures of EPMs for particular applications. In this comprehensive review, we aim to provide an in-depth analysis and discussion of the fundamental physicochemical properties, synthesis, and applications of EPMs in the areas of energy conversion, energy storage, and environmental remediation. Our evaluations are based on recent literature on well-established phosphorus allotropes and theoretical predictions of new EPMs. The objective of this review is to enhance our comprehension of the characteristics of EPMs, keep abreast of recent advances, and provide guidance for future research of EPMs in the fields of chemistry and materials science.

9.
Environ Sci Technol ; 57(14): 5739-5750, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36989422

RESUMEN

We have been effectively protected by disposable propylene face masks during the COVID-19 pandemic; however, they may pose health risks due to the release of fine particles and chemicals. We measured micro/nanoparticles and organic chemicals in disposable medical masks, surgical masks, and (K)N95 respirators. In the breathing-simulation experiment, no notable differences were found in the total number of particles among mask types or between breathing intensities. However, when considering subranges, <2.5 µm particles accounted for ∼90% of the total number of micro/nanoparticles. GC-HRMS-based suspect screening tentatively revealed 79 (semi)volatile organic compounds in masks, with 18 being detected in ≥80% of samples and 44 in ≤20% of samples. Three synthetic phenolic antioxidants were quantified, and AO168 reached a median concentration of 2968 ng/g. By screening particles collected from bulk mask fabrics, we detected 18 chemicals, including four commonly detected in masks, suggesting chemical partition between the particles and the fabric fibers and chemical exposure via particle inhalation. These particles and chemicals are believed to originate from raw materials, intentionally and nonintentionally added substances in mask production, and their transformation products. This study highlights the need to study the long-term health risks associated with mask wearing and raises concerns over mask quality control.


Asunto(s)
COVID-19 , Nanopartículas , Humanos , COVID-19/prevención & control , Máscaras , Polipropilenos , Pandemias/prevención & control
10.
Ecotoxicol Environ Saf ; 258: 114979, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37150107

RESUMEN

The widespread usage of 3-tert-butyl-4-hydroxyanisole (3-BHA) as an anthropogenic antioxidant has caused considerable environmental contamination and frequent detection in diverse human-derived samples. 3-BHA can promote adipogenesis and impair hepatic lipid metabolism, while its effects on renal lipid homeostasis remain to be uncertain. Herein, using the human kidney 2 (HK-2) cell experiments, 3-BHA was found to cause a significant reduction in lipid accumulation of the HK-2 cells in both exposure concentration- and duration-dependent manners. Exposure to 3-BHA lowered the transcriptional expressions of sterol regulatory element-binding protein 1 (SREBP1) and acetyl-CoA carboxylase (ACC), as well as ACC activity, indicating the inhibition in the process of de novo lipogenesis in HK-2 cells. On this basis, the mechanism study suggested that the reduced glucose absorption and accelerated glycolysis were concomitantly involved. The antagonism of 3-BHA on the transactivation of androgen receptor (AR) contributed to the lowered de novo lipogenesis and the consequent intracellular lipid reduction. The metabolomics data further confirmed the imbalance of lipid homeostasis and dysregulation of de novo lipogenesis. The new findings on the impaired renal lipid metabolism induced by 3-BHA warranted proper care about the usage of this chemical as a food additive.


Asunto(s)
Metabolismo de los Lípidos , Lipogénesis , Humanos , Receptores Androgénicos/genética , Lípidos
11.
Molecules ; 28(2)2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36677903

RESUMEN

Synergistic drug combinations have demonstrated effective therapeutic effects in cancer treatment. Deep learning methods accelerate identification of novel drug combinations by reducing the search space. However, potential adverse drug-drug interactions (DDIs), which may increase the risks for combination therapy, cannot be detected by existing computational synergy prediction methods. We propose DEML, an ensemble-based multi-task neural network, for the simultaneous optimization of five synergy regression prediction tasks, synergy classification, and DDI classification tasks. DEML uses chemical and transcriptomics information as inputs. DEML adapts the novel hybrid ensemble layer structure to construct higher order representation using different perspectives. The task-specific fusion layer of DEML joins representations for each task using a gating mechanism. For the Loewe synergy prediction task, DEML overperforms the state-of-the-art synergy prediction method with an improvement of 7.8% and 13.2% for the root mean squared error and the R2 correlation coefficient. Owing to soft parameter sharing and ensemble learning, DEML alleviates the multi-task learning 'seesaw effect' problem and shows no performance loss on other tasks. DEML has a superior ability to predict drug pairs with high confidence and less adverse DDIs. DEML provides a promising way to guideline novel combination therapy strategies for cancer treatment.


Asunto(s)
Perfilación de la Expresión Génica , Redes Neurales de la Computación , Interacciones Farmacológicas , Terapia Combinada , Combinación de Medicamentos
12.
J Cell Mol Med ; 26(14): 3862-3872, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35668632

RESUMEN

Thoracic ossification of the ligamentum flavum (TOLF) is ectopic ossification of the spinal ligaments. Histologically, the development of TOLF can be described as the process of endochondral ossification. However, the underlying aetiology has not been completely clarified. In this investigation, the gene expression profile associated with leucine-rich repeat-containing G-protein-coupled receptors (LGR) and Wnt signalling pathway in the thoracic ligamentum flavum cells (TLFCs) of different ossification stages was analysed via RNA sequencing. We further confirmed the significant differences in the related gene expression profile by Gene Ontology (GO) enrichment analysis. LGR5 was first identified in primary human TLFCs during osteogenic differentiation. To evaluate the effect of LGR5 on osteogenic differentiation, LGR5 has been knocked down and overexpressed in human TLFCs. We observed that the knockdown of LGR5 inhibited the activity of Wnt signalling and attenuated the potential osteogenic differentiation of TLFCs, while overexpression of LGR5 activated the Wnt signalling pathway and increased osteogenic differentiation. Our results provide important evidence for the potent positive mediatory effects of LGR5 on osteogenesis by enhancing the Wnt signalling pathway in TOLF.


Asunto(s)
Diferenciación Celular , Ligamento Amarillo , Receptores Acoplados a Proteínas G , Vía de Señalización Wnt , Diferenciación Celular/genética , Células Cultivadas , Humanos , Ligamento Amarillo/citología , Osteogénesis/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Vía de Señalización Wnt/genética
13.
Angiogenesis ; 25(4): 517-533, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35859222

RESUMEN

The critical factors regulating stem cell endothelial commitment and renewal remain not well understood. Here, using loss- and gain-of-function assays together with bioinformatic analysis and multiple model systems, we show that PDGFD is an essential factor that switches on endothelial commitment of embryonic stem cells (ESCs). PDGFD genetic deletion or knockdown inhibits ESC differentiation into EC lineage and increases ESC self-renewal, and PDGFD overexpression activates ESC differentiation towards ECs. RNA sequencing reveals a critical requirement of PDGFD for the expression of vascular-differentiation related genes in ESCs. Importantly, PDGFD genetic deletion or knockdown increases ESC self-renewal and decreases blood vessel densities in both embryonic and neonatal mice and in teratomas. Mechanistically, we reveal that PDGFD fulfills this function via the MAPK/ERK pathway. Our findings provide new insight of PDGFD as a novel regulator of ESC fate determination, and suggest therapeutic implications of modulating PDGFD activity in stem cell therapy.


Asunto(s)
Células Madre Embrionarias , Modelos Biológicos , Animales , Diferenciación Celular/genética , Células Madre Embrionarias/metabolismo , Sistema de Señalización de MAP Quinasas , Ratones
14.
PLoS Comput Biol ; 17(3): e1008769, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33735194

RESUMEN

Extensive amounts of multi-omics data and multiple cancer subtyping methods have been developed rapidly, and generate discrepant clustering results, which poses challenges for cancer molecular subtype research. Thus, the development of methods for the identification of cancer consensus molecular subtypes is essential. The lack of intuitive and easy-to-use analytical tools has posed a barrier. Here, we report on the development of the COnsensus Molecular SUbtype of Cancer (COMSUC) web server. With COMSUC, users can explore consensus molecular subtypes of more than 30 cancers based on eight clustering methods, five types of omics data from public reference datasets or users' private data, and three consensus clustering methods. The web server provides interactive and modifiable visualization, and publishable output of analysis results. Researchers can also exchange consensus subtype results with collaborators via project IDs. COMSUC is now publicly and freely available with no login requirement at http://comsuc.bioinforai.tech/ (IP address: http://59.110.25.27/). For a video summary of this web server, see S1 Video and S1 File.


Asunto(s)
Biología Computacional/métodos , Internet , Neoplasias , Programas Informáticos , Algoritmos , Análisis por Conglomerados , Consenso , Humanos , Neoplasias/clasificación , Neoplasias/genética
15.
Environ Sci Technol ; 56(5): 3204-3213, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35133139

RESUMEN

3-tert-Butyl-4-hydroxyanisole (3-BHA), one of the widely used food antioxidants, has been found to act as a potential obesogen by promoting adipogenesis in vitro and inducing white adipose tissue development in vivo. Whether 3-BHA-induced visceral obesity was accompanied by a disruption of hepatic lipid homeostasis in mammals remained unclear. In this study, we evaluated the effect of 3-BHA on the development of nonalcoholic fatty liver disease (NAFLD) in male C57BL/6J mice. After 18 weeks of oral administration of 10 mg/kg 3-BHA, the mice fed with a high-fat diet (HFD) had higher hepatic triglyceride concentrations (0.32 mg/mg protein) and severer steatosis (1.57 for the NAFLD score) than the control ones. The in vivo hepatic lipid deposition disturbed by 3-BHA was transcriptionally regulated by the genes involved in lipid uptake, de novo lipogenesis, fatty acid oxidation, and lipid export. The in vitro studies further confirmed that 24 h of exposure to 50 µM 3-BHA could induce intracellular oleic acid (OA) uptake and triglyceride accumulation (1.5-fold of the OA control) in HepG2 cells. Lipidomic analysis indicated the perturbation of 3-BHA in the levels of 30 lipid species related to sphingolipids, glycerophospholipids, and glycerolipids under HFD conditions. The findings herein first revealed the disruption effect of 3-BHA on hepatic lipid homeostasis, thus exacerbating the development of HFD-induced NAFLD.


Asunto(s)
Dieta Alta en Grasa , Enfermedad del Hígado Graso no Alcohólico , Animales , Hidroxianisol Butilado , Metabolismo de los Lípidos , Hígado/metabolismo , Masculino , Mamíferos , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Triglicéridos/metabolismo , Triglicéridos/farmacología
16.
Environ Sci Technol ; 56(3): 1854-1863, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35049283

RESUMEN

Virus receptors are highly involved in mediating the entrance of infectious viruses into host cells. Here, we found that typical chemical exposure caused the upregulation of virus receptor mRNA levels. Chemicals with the same structural characteristics can affect the transcription of angiotensin-converting enzyme 2 (ACE2), a dominant receptor of SARS-CoV-2. Some chemicals can also regulate the transcription of ACE2 by similar regulatory mechanisms, such as multilayer biological responses and the crucial role of TATA-box binding protein associated factor 6. The abovementioned finding suggested that chemical mixtures may have a joint effect on the ACE2 mRNA level in the real scenario, where humans are exposed to numerous chemicals simultaneously in daily life. Chemically regulated virus receptor transcription was in a tissue-dependent manner, with the highest sensitivity in pulmonary epithelial cells. Therefore, in addition to genetic factors, exogenous chemical exposure can be an emerging nongenetic factor that stimulates the transcription of virus receptor abundance and may elevate the protein expression. These alterations could ultimately give rise to the susceptibility to virus infection and disease severity. This finding highlights new requirements for sufficient epidemiological data about exposomes on pathogen receptors in the host.


Asunto(s)
COVID-19 , Receptores Virales , Enzima Convertidora de Angiotensina 2 , Contaminantes Ambientales , Humanos , ARN Mensajero , SARS-CoV-2
17.
Environ Sci Technol ; 56(1): 460-469, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34930008

RESUMEN

The extensive applications of parabens in foods, drugs, and cosmetics cause inevitable exposure to humans. Revealing the developmental toxicity of parabens is of utmost importance regarding their safety evaluation. In this study, the effects of four commonly used parabens, including methyl paraben (20 ∼ 200 µM), ethyl paraben (20 ∼ 100 µM), propyl paraben (5 ∼ 20 µM), and butyl paraben (BuP, 2 ∼ 10 µM), were investigated on the early development of zebrafish embryos and larvae. The underlying mechanisms were explored from the aspect of their disturbance in the thyroid endocrine system using in vivo, in vitro, and in silico assays. Paraben exposure caused deleterious effects on the early development of zebrafish, with BuP displaying the highest toxicity among all, resulting in the exposure concentration-related mortality, decreased hatching rate, reduced body length, lowered heart rate, and the incidence of malformation. Further investigation showed that paraben exposure reduced thyroid hormone levels and disturbed the transcriptional expressions of the target genes in the hypothalamic-pituitary-thyroid axis. Molecular docking analysis combined with in vitro GH3 cell proliferation assay testified that all test parabens exhibited thyroid receptor agonistic activities. The findings confirmed the developmental toxicity of the test parabens and their thyroid endocrine disruption effects, providing substantial evidence on the safety control of paraben-based preservatives.


Asunto(s)
Parabenos , Glándula Tiroides , Animales , Simulación del Acoplamiento Molecular , Parabenos/análisis , Conservadores Farmacéuticos/toxicidad , Glándula Tiroides/metabolismo , Pez Cebra/metabolismo
18.
Environ Sci Technol ; 56(12): 8496-8506, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35609006

RESUMEN

The neurodevelopmental process is highly vulnerable to environmental stress from exposure to endocrine-disrupting chemicals. Perfluorinated iodine alkanes (PFIs) possess estrogenic activities, while their potential neurodevelopmental toxicity remains blurry. In the present study, the effects of two PFIs, including dodecafluoro-1,6-diiodohexane (PFHxDI) and tridecafluorohexyl iodide (PFHxI), were investigated in the neural differentiation of the mouse embryonic stem cells (mESCs). Without influencing the cytobiological process of the mESCs, PFIs interfered the triploblastic development by increasing ectodermal differentiation, thus promoting subsequent neurogenesis. The temporal regulation of PFIs in Notch-Hes signaling through the targeting of mmu-miRNA-34a-5p provided a substantial explanation for the underlying mechanism of PFI-promoted mESC commitment to the neural lineage. The findings herein provided new knowledge on the potential neurodevelopmental toxicities of PFIs, which would help advance the health risk assessment of these kinds of emerging chemicals.


Asunto(s)
Yodo , MicroARNs , Alcanos , Animales , Diferenciación Celular/fisiología , Yoduros , Ratones , Células Madre Embrionarias de Ratones
19.
Clin Lab ; 68(4)2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35443588

RESUMEN

BACKGROUND: Diabetic retinopathy (DR) is the common complication of diabetes, accounting for most blindness cases worldwide. MicroRNAs (miRs) are small non-coding RNAs and participate in the pathogenesis and develop-ment of various diseases, including DR. The present study aimed to investigate miR-335-3p and vascular endothelial growth factor (EGFR) roles in DR diagnosis and development. METHODS: A total of 104 healthy volunteers, 96 type 2 diabetes mellitus (T2DM) patients, and 102 DR cases were enrolled in this study. The clinicopathological information of all subjects were collected and analyzed using chisquared test. After collecting plasma from each participant, a ROC assay was conducted to determine the dis-criminative value of miR-335-3p and EGFR in DR diagnosis. The targeted relationship between miR-335-3p and EGFR was examined by dual-luciferase reporter assay and correlation analysis. After exposing APRE-19 cells to different concentrations of high glucose (HG), the DR in vitro cell model was constructed. The expression levels of miR-335-3p and EGFR were detected using RT-qPCR. The effects of miR-335-3p and EGFR on HG-treated APRE-19 cell viability were determined by CCK-8 assay. RESULTS: Clinicopathological information presented that BMI index, fasting blood glucose (FBP), 2h-BG, HbA1c, miR-335-3p, and EGFR levels were strongly associated with DR pathogenesis. MiR-335-3p was significantly decreased while EGFR was increased in DR patients and HG-treated APRE-19 cells. MiR-335-3p and EGFR presented high accuracy, sensitivity, and specificity in differentiating DR from healthy cases and T2DM patients; moreover, miR-335-3p and EGFR could also discriminate proliferative DR (PDR) cases from healthy controls. After confirming that miR-335-3p was negatively correlated with its target EGFR, we found miR-335-3p could increase the viability in HG-treated APRE-19 cells while silencing of EGFR could also reverse the inhibitory effects of HG conditions on APRE-19 cell viability. CONCLUSIONS: We concluded that plasma miR-335-3p and EGFR may be utilized as non-invasive biomarkers for screening DR cases, contributing to DR diagnosis and treatment.


Asunto(s)
Diabetes Mellitus Tipo 2 , Retinopatía Diabética , MicroARNs , Proliferación Celular , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/genética , Retinopatía Diabética/diagnóstico , Retinopatía Diabética/genética , Factores de Crecimiento Endotelial/farmacología , Receptores ErbB/genética , Humanos , Factor A de Crecimiento Endotelial Vascular
20.
BMC Musculoskelet Disord ; 23(1): 668, 2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35831797

RESUMEN

BACKGROUND: To compare the safety and efficacy of tranexamic acid (TXA)-soaked absorbable Gelfoam and the retrograde injection of TXA through a drain with drain-clamping in degenerative cervical laminoplasty patients. METHODS: Patients were assigned into either TXA retrograde injection (TXA-RI), TXA-soaked absorbable Gelfoam (TXA-Gel), or control groups. The demographics, operative measurements, volume and length of drainage, length of hospital stay, complete blood cell count, coagulopathy, postoperative complications, and blood transfusion were recorded. RESULTS: We enrolled 133 patients, with 44, 44, and 45 in the TXA-RI, TXA-Gel, and control groups, respectively. The baseline characteristics did not differ significantly among the three groups. The TXA-RI group exhibited a lower volume and length of postoperative drainage compared to the TXA-Gel and control groups (126.60 ± 31.27 vs. 156.60 ± 38.63 and 275.45 ± 75.27 mL; 49.45 ± 9.70 vs 58.70 ± 10.46 and 89.31 ± 8.50 hours, all P < 0.01). The TXA-RI group also had significantly shorter hospital stays compared to the control group (5.31 ± 1.18 vs 7.50 ± 1.25 days, P < 0.05) and higher hemoglobin and hematocrit levels (12.58 ± 1.67 vs 11.28 ± 1.76 g/dL; 36.62 ± 3.66% vs 33.82 ± 3.57%, both P < 0.05) at hospital discharge. In the TXA-RI and TXA-Gel groups, the D-dimmer (DD) and fibrinogen (FIB) were significantly lower than those in the control group after surgery (P < 0.05). None of the patients required blood transfusion. No complications, including thromboembolic events, were reported. CONCLUSION: Topical retrograde injection of TXA through a drain with drain-clamping at the conclusion of unilateral posterior cervical expansive open-door laminoplasty may effectively reduce postoperative blood loss and the length of hospital stays without increasing postoperative complications.


Asunto(s)
Antifibrinolíticos , Laminoplastia , Ácido Tranexámico , Antifibrinolíticos/efectos adversos , Pérdida de Sangre Quirúrgica/prevención & control , Catéteres , Constricción , Drenaje , Esponja de Gelatina Absorbible/efectos adversos , Humanos , Laminoplastia/efectos adversos , Hemorragia Posoperatoria/etiología , Hemorragia Posoperatoria/prevención & control , Ácido Tranexámico/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA