RESUMEN
The efficacy of imaging-guided photodynamic therapy (PDT) is compromised by the attenuation of fluorescence and decline in reactive oxygen species (ROS) generation efficiency in the physiological environment of conventional photosensitizers, limited near-infrared (NIR) absorption, and high systemic cytotoxicity. This paper presents the synthesis of two cyclometalated Ir (III) complexes (Ir-thpy and Ir-ppy) by using a triphenylamine derivative (DPTPA) as the primary ligand and their encapsulation into an amphiphilic phospholipid to form nanoparticles (NPs). These complexes exhibit aggregation-induced emission features and remarkably enhanced ROS generation compared to Chlorin e6 (Ce6). Moreover, Ir-thpy NPs possess the unique ability to selectively target mitochondria, leading to depolarization of the mitochondrial membrane potential and ultimately triggering apoptosis. Notably, Ir-thpy NPs exhibit exceptional photocytotoxicity even towards cisplatin-resistant A549/DDP tumor cells. In vivo two-photon imaging verified the robust tumor-targeting efficacy of Ir-thpy NPs. The in vivo results unequivocally demonstrate that Ir-thpy NPs exhibit excellent tumor ablation along with remarkable biocompatibility. This study presents a promising approach for the development of multifunctional Ir-NPs for two-photon imaging-guided PDT and provides novel insights for potential clinical applications in oncology.
Asunto(s)
Nanopartículas , Fotoquimioterapia , Iridio/farmacología , Especies Reactivas de Oxígeno , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Mitocondrias , Línea Celular TumoralRESUMEN
Imaging-guided photodynamic therapy (PDT) holds great potential for tumor therapy. However, achieving the synergistic enhancement of the reactive oxygen species (ROS) generation efficiency and fluorescence emission of photosensitizers (PSs) remains a challenge, resulting in suboptimal image guidance and theranostic efficacy. The hypoxic tumor microenvironment also hinders the efficacy of PDT. Herein, we propose a "two-stage rocket-propelled" photosensitive system for tumor cell ablation. This system utilizes MitoS, a mitochondria-targeted PS, to ablate tumor cells. Importantly, MitoS can react with HClO to generate a more efficient PS, MitoSO, with a significantly improved fluorescence quantum yield. Both MitoS and MitoSO exhibit less O2-dependent type I ROS generation capability, inducing apoptosis and ferroptosis. In vivo PDT results confirm that this mitochondrial-specific type I-II cascade phototherapeutic strategy is a potent intervention for tumor downstaging. This study not only sheds light on the correlation between the PS structure and the ROS generation pathway but also proposes a novel and effective strategy for tumor downstaging intervention.