Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Metab Eng ; 62: 95-105, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32540392

RESUMEN

Gas fermentation by autotrophic bacteria, such as clostridia, offers a sustainable path to numerous bioproducts from a range of local, highly abundant, waste and low-cost feedstocks, such as industrial flue gases or syngas generated from biomass or municipal waste. Unfortunately, designing and engineering clostridia remains laborious and slow. The ability to prototype individual genetic part function, gene expression patterns, and biosynthetic pathway performance in vitro before implementing designs in cells could help address these bottlenecks by speeding up design. Unfortunately, a high-yielding cell-free gene expression (CFE) system from clostridia has yet to be developed. Here, we report the development and optimization of a high-yielding (236 ± 24 µg/mL) batch CFE platform from the industrially relevant anaerobe, Clostridium autoethanogenum. A key feature of the platform is that both circular and linear DNA templates can be applied directly to the CFE reaction to program protein synthesis. We demonstrate the ability to prototype gene expression, and quantitatively map aerobic cell-free metabolism in lysates from this system. We anticipate that the C. autoethanogenum CFE platform will not only expand the protein synthesis toolkit for synthetic biology, but also serve as a platform in expediting the screening and prototyping of gene regulatory elements in non-model, industrially relevant microbes.


Asunto(s)
Sistema Libre de Células , Ingeniería Metabólica , Redes y Vías Metabólicas , Sistema Libre de Células/metabolismo , Clostridium , Biosíntesis de Proteínas
2.
New Phytol ; 222(1): 115-121, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-29978909

RESUMEN

While recent reports demonstrate that the direct emission of methane from living tree trunks may be a significant terrestrial emission source, there has been debate whether tree emissions are due to transport from soils or produced in the wood environment itself. Reports of methanogens from wood of trees were prominent in the literature 40 years ago but have not been revisited with molecular ecology approaches. We examined communities associated with Populus deltoides using rRNA gene sequence analyses and how these vary with tree and wood properties. Our data indicate that wood environments are dominated by anaerobic microbiomes. Methanogens are prominent in heartwood (mean 34% relative abundance) compared to sapwood environments (13%), and dominant operational taxonomic units (OTUs) were classified as the Methanobacterium sp. Members of the Firmicutes phylum comprised 39% of total sequences and were in 42% greater abundance in sapwood over heartwood niches. Tree diameter was the strongest predictor of methanogen abundance, but wood moisture content and pH were also significant predictors of taxon abundance and overall community composition. Unlike microbiomes of the soil, rhizosphere and phyllosphere, wood associated communities are shaped by unique environmental conditions and may be prominent and overlooked sources of methane emissions in temperate forest systems.


Asunto(s)
Archaea/metabolismo , Ecosistema , Metano/metabolismo , Populus/microbiología , Madera/microbiología , Bacterias/crecimiento & desarrollo , Biodiversidad , Microbiota , Análisis de Componente Principal
3.
Appl Environ Microbiol ; 82(18): 5698-708, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27422831

RESUMEN

UNLABELLED: Bacterial endophytes that colonize Populus trees contribute to nutrient acquisition, prime immunity responses, and directly or indirectly increase both above- and below-ground biomasses. Endophytes are embedded within plant material, so physical separation and isolation are difficult tasks. Application of culture-independent methods, such as metagenome or bacterial transcriptome sequencing, has been limited due to the predominance of DNA from the plant biomass. Here, we describe a modified differential and density gradient centrifugation-based protocol for the separation of endophytic bacteria from Populus roots. This protocol achieved substantial reduction in contaminating plant DNA, allowed enrichment of endophytic bacteria away from the plant material, and enabled single-cell genomics analysis. Four single-cell genomes were selected for whole-genome amplification based on their rarity in the microbiome (potentially uncultured taxa) as well as their inferred abilities to form associations with plants. Bioinformatics analyses, including assembly, contamination removal, and completeness estimation, were performed to obtain single-amplified genomes (SAGs) of organisms from the phyla Armatimonadetes, Verrucomicrobia, and Planctomycetes, which were unrepresented in our previous cultivation efforts. Comparative genomic analysis revealed unique characteristics of each SAG that could facilitate future cultivation efforts for these bacteria. IMPORTANCE: Plant roots harbor a diverse collection of microbes that live within host tissues. To gain a comprehensive understanding of microbial adaptations to this endophytic lifestyle from strains that cannot be cultivated, it is necessary to separate bacterial cells from the predominance of plant tissue. This study provides a valuable approach for the separation and isolation of endophytic bacteria from plant root tissue. Isolated live bacteria provide material for microbiome sequencing, single-cell genomics, and analyses of genomes of uncultured bacteria to provide genomics information that will facilitate future cultivation attempts.


Asunto(s)
Bacterias/clasificación , Bacterias/aislamiento & purificación , Endófitos/clasificación , Endófitos/aislamiento & purificación , Raíces de Plantas/microbiología , Populus/microbiología , Bacterias/genética , Centrifugación por Gradiente de Densidad/métodos , Biología Computacional , Endófitos/genética , Metagenómica , Análisis de Secuencia de ADN , Análisis de la Célula Individual/métodos
4.
Appl Environ Microbiol ; 80(11): 3518-30, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24682300

RESUMEN

This study investigated the abundance, distribution, and composition of microbial communities at the watershed scale in a boreal peatland within the Marcell Experimental Forest (MEF), Minnesota, USA. Through a close coupling of next-generation sequencing, biogeochemistry, and advanced analytical chemistry, a biogeochemical hot spot was revealed in the mesotelm (30- to 50-cm depth) as a pronounced shift in microbial community composition in parallel with elevated peat decomposition. The relative abundance of Acidobacteria and the Syntrophobacteraceae, including known hydrocarbon-utilizing genera, was positively correlated with carbohydrate and organic acid content, showing a maximum in the mesotelm. The abundance of Archaea (primarily crenarchaeal groups 1.1c and 1.3) increased with depth, reaching up to 60% of total small-subunit (SSU) rRNA gene sequences in the deep peat below the 75-cm depth. Stable isotope geochemistry and potential rates of methane production paralleled vertical changes in methanogen community composition to indicate a predominance of acetoclastic methanogenesis mediated by the Methanosarcinales in the mesotelm, while hydrogen-utilizing methanogens predominated in the deeper catotelm. RNA-derived pyrosequence libraries corroborated DNA sequence data to indicate that the above-mentioned microbial groups are metabolically active in the mid-depth zone. Fungi showed a maximum in rRNA gene abundance above the 30-cm depth, which comprised only an average of 0.1% of total bacterial and archaeal rRNA gene abundance, indicating prokaryotic dominance. Ratios of C to P enzyme activities approached 0.5 at the acrotelm and catotelm, indicating phosphorus limitation. In contrast, P limitation pressure appeared to be relieved in the mesotelm, likely due to P solubilization by microbial production of organic acids and C-P lyases. Based on path analysis and the modeling of community spatial turnover, we hypothesize that P limitation outweighs N limitation at MEF, and microbial communities are structured by the dominant shrub, Chamaedaphne calyculata, which may act as a carbon source for major consumers in the peatland.


Asunto(s)
Archaea/clasificación , Bacterias/clasificación , Biota , Metabolismo de los Hidratos de Carbono , Hongos/clasificación , Fósforo/metabolismo , Microbiología del Suelo , Archaea/genética , Archaea/metabolismo , Bacterias/genética , Bacterias/metabolismo , Técnicas de Química Analítica , ADN Ribosómico/química , ADN Ribosómico/genética , Bosques , Hongos/genética , Hongos/metabolismo , Minnesota , Análisis de Secuencia de ADN , Suelo/química
5.
Environ Microbiol ; 15(6): 1882-99, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23387867

RESUMEN

Next-generation sequencing has dramatically changed the landscape of microbial ecology, large-scale and in-depth diversity studies being now widely accessible. However, determining the accuracy of taxonomic and quantitative inferences and comparing results obtained with different approaches are complicated by incongruence of experimental and computational data types and also by lack of knowledge of the true ecological diversity. Here we used highly diverse bacterial and archaeal synthetic communities assembled from pure genomic DNAs to compare inferences from metagenomic and SSU rRNA amplicon sequencing. Both Illumina and 454 metagenomic data outperformed amplicon sequencing in quantifying the community composition, but the outcome was dependent on analysis parameters and platform. New approaches in processing and classifying amplicons can reconstruct the taxonomic composition of the community with high reproducibility within primer sets, but all tested primers sets lead to significant taxon-specific biases. Controlled synthetic communities assembled to broadly mimic the phylogenetic richness in target environments can provide important validation for fine-tuning experimental and computational parameters used to characterize natural communities.


Asunto(s)
Archaea/clasificación , Archaea/genética , Bacterias/clasificación , Bacterias/genética , Biodiversidad , Metagenómica , Técnicas Microbiológicas/normas , Cartilla de ADN/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , ARN Ribosómico/genética , Reproducibilidad de los Resultados
6.
J Bacteriol ; 194(18): 5147-8, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22933770

RESUMEN

Pelosinus fermentans 16S rRNA gene sequences have been reported from diverse geographical sites since the recent isolation of the type strain. We present the genome sequence of the P. fermentans type strain R7 (DSM 17108) and genome sequences for two new strains with different abilities to reduce iron, chromate, and uranium.


Asunto(s)
ADN Bacteriano/química , ADN Bacteriano/genética , Genoma Bacteriano , Análisis de Secuencia de ADN , Veillonellaceae/genética , Cromo/metabolismo , Microbiología Ambiental , Contaminantes Ambientales/metabolismo , Hierro/metabolismo , Datos de Secuencia Molecular , Oxidación-Reducción , Uranio/metabolismo , Veillonellaceae/aislamiento & purificación , Veillonellaceae/metabolismo
7.
BMC Genomics ; 13: 336, 2012 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-22823947

RESUMEN

BACKGROUND: Clostridium thermocellum is a candidate consolidated bioprocessing biocatalyst, which is a microorganism that expresses enzymes for both cellulose hydrolysis and its fermentation to produce fuels such as lignocellulosic ethanol. However, C. thermocellum is relatively sensitive to ethanol compared to ethanologenic microorganisms such as yeast and Zymomonas mobilis that are used in industrial fermentations but do not possess native enzymes for industrial cellulose hydrolysis. RESULTS: In this study, C. thermocellum was grown to mid-exponential phase and then treated with ethanol to a final concentration of 3.9 g/L to investigate its physiological and regulatory responses to ethanol stress. Samples were taken pre-shock and 2, 12, 30, 60, 120, and 240 min post-shock, and from untreated control fermentations for systems biology analyses. Cell growth was arrested by ethanol supplementation with intracellular accumulation of carbon sources such as cellobiose, and sugar phosphates, including fructose-6-phosphate and glucose-6-phosphate. The largest response of C. thermocellum to ethanol shock treatment was in genes and proteins related to nitrogen uptake and metabolism, which is likely important for redirecting the cells physiology to overcome inhibition and allow growth to resume. CONCLUSION: This study suggests possible avenues for metabolic engineering and provides comprehensive, integrated systems biology datasets that will be useful for future metabolic modeling and strain development endeavors.


Asunto(s)
Clostridium thermocellum/genética , Etanol/química , Metaboloma , Proteoma/análisis , Transcriptoma , Cromatografía Líquida de Alta Presión , Clostridium thermocellum/efectos de los fármacos , Clostridium thermocellum/crecimiento & desarrollo , Biología Computacional , Fermentación , Cromatografía de Gases y Espectrometría de Masas , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Bacteriano/genética , Estrés Fisiológico , Biología de Sistemas , Espectrometría de Masas en Tándem
8.
ISME Commun ; 2(1): 66, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37938724

RESUMEN

There are known associations between opioids, obesity, and the gut microbiome, but the molecular connection/mediation of these relationships is not understood. To better clarify the interplay of physiological, genetic, and microbial factors, this study investigated the microbiome and host inflammatory responses to chronic opioid administration in genetically obese, diet-induced obese, and lean mice. Samples of feces, urine, colon tissue, and plasma were analyzed using targeted LC-MS/MS quantification of metabolites, immunoassays of inflammatory cytokine levels, genome-resolved metagenomics, and metaproteomics. Genetic obesity, diet-induced obesity, and morphine treatment in lean mice each showed increases in distinct inflammatory cytokines. Metagenomic assembly and binning uncovered over 400 novel gut bacterial genomes and species. Morphine administration impacted the microbiome's composition and function, with the strongest effect observed in lean mice. This microbiome effect was less pronounced than either diet or genetically driven obesity. Based on inferred microbial physiology from the metaproteome datasets, a high-fat diet transitioned constituent microbes away from harvesting diet-derived nutrients and towards nutrients present in the host mucosal layer. Considered together, these results identified novel host-dependent phenotypes, differentiated the effects of genetic obesity versus diet induced obesity on gut microbiome composition and function, and showed that chronic morphine administration altered the gut microbiome.

9.
Environ Microbiol ; 13(8): 2158-71, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21418499

RESUMEN

To evaluate the effects of local fluid geochemistry on microbial communities associated with active hydrothermal vent deposits, we examined the archaeal and bacterial communities of 12 samples collected from two very different vent fields: the basalt-hosted Lucky Strike (37°17'N, 32°16.3'W, depth 1600-1750 m) and the ultramafic-hosted Rainbow (36°13'N, 33°54.1'W, depth 2270-2330 m) vent fields along the Mid-Atlantic Ridge (MAR). Using multiplexed barcoded pyrosequencing of the variable region 4 (V4) of the 16S rRNA genes, we show statistically significant differences between the archaeal and bacterial communities associated with the different vent fields. Quantitative polymerase chain reaction (qPCR) assays of the functional gene diagnostic for methanogenesis (mcrA), as well as geochemical modelling to predict pore fluid chemistries within the deposits, support the pyrosequencing observations. Collectively, these results show that the less reduced, hydrogen-poor fluids at Lucky Strike limit colonization by strict anaerobes such as methanogens, and allow for hyperthermophilic microaerophiles, like Aeropyrum. In contrast, the hydrogen-rich reducing vent fluids at the ultramafic-influenced Rainbow vent field support the prevalence of methanogens and other hydrogen-oxidizing thermophiles at this site. These results demonstrate that biogeographical patterns of hydrothermal vent microorganisms are shaped in part by large scale geological and geochemical processes.


Asunto(s)
Archaea/clasificación , Bacterias/clasificación , Biodiversidad , Respiraderos Hidrotermales/microbiología , Archaea/genética , Bacterias/genética , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiología , Geología , Respiraderos Hidrotermales/química , Datos de Secuencia Molecular , Filogenia , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S/genética , Agua de Mar/química , Agua de Mar/microbiología
10.
Appl Environ Microbiol ; 77(1): 302-11, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21057024

RESUMEN

High concentrations of uranium, inorganic mercury [Hg(II)], and methylmercury (MeHg) have been detected in streams located in the Department of Energy reservation in Oak Ridge, TN. To determine the potential effects of the surface water contamination on the microbial community composition, surface stream sediments were collected 7 times during the year, from 5 contaminated locations and 1 control stream. Fifty-nine samples were analyzed for bacterial community composition and geochemistry. Community characterization was based on GS 454 FLX pyrosequencing with 235 Mb of 16S rRNA gene sequence targeting the V4 region. Sorting and filtering of the raw reads resulted in 588,699 high-quality sequences with lengths of >200 bp. The bacterial community consisted of 23 phyla, including Proteobacteria (ranging from 22.9 to 58.5% per sample), Cyanobacteria (0.2 to 32.0%), Acidobacteria (1.6 to 30.6%), Verrucomicrobia (3.4 to 31.0%), and unclassified bacteria. Redundancy analysis indicated no significant differences in the bacterial community structure between midchannel and near-bank samples. Significant correlations were found between the bacterial community and seasonal as well as geochemical factors. Furthermore, several community members within the Proteobacteria group that includes sulfate-reducing bacteria and within the Verrucomicrobia group appeared to be associated positively with Hg and MeHg. This study is the first to indicate an influence of MeHg on the in situ microbial community and suggests possible roles of these bacteria in the Hg/MeHg cycle.


Asunto(s)
Bacterias/efectos de los fármacos , Biodiversidad , Mercurio/toxicidad , Metales Pesados/toxicidad , Ríos/microbiología , Contaminantes Químicos del Agua/toxicidad , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Sedimentos Geológicos/microbiología , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Tennessee
11.
Commun Biol ; 4(1): 748, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34135464

RESUMEN

Soil microbiomes are rapidly becoming known as an important driver of plant phenotypic variation and may mediate plant responses to environmental factors. However, integrating spatial scales relevant to climate change with plant intraspecific genetic variation and soil microbial ecology is difficult, making studies of broad inference rare. Here we hypothesize and show: 1) the degree to which tree genotypes condition their soil microbiomes varies by population across the geographic distribution of a widespread riparian tree, Populus angustifolia; 2) geographic dissimilarity in soil microbiomes among populations is influenced by both abiotic and biotic environmental variation; and 3) soil microbiomes that vary in response to abiotic and biotic factors can change plant foliar phenology. We show soil microbiomes respond to intraspecific variation at the tree genotype and population level, and geographic variation in soil characteristics and climate. Using a fully reciprocal plant population by soil location feedback experiment, we identified a climate-based soil microbiome effect that advanced and delayed bud break phenology by approximately 10 days. These results demonstrate a landscape-level feedback between tree populations and associated soil microbial communities and suggest soil microbes may play important roles in mediating and buffering bud break phenology with climate warming, with whole ecosystem implications.


Asunto(s)
Cambio Climático , Ecosistema , Populus/microbiología , Microbiología del Suelo , Suelo/química , Variación Genética , Microbiota , Rizosfera , Árboles/microbiología , Estados Unidos
12.
BMC Microbiol ; 10: 149, 2010 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-20497531

RESUMEN

BACKGROUND: Communities of microorganisms control the rates of key biogeochemical cycles, and are important for biotechnology, bioremediation, and industrial microbiological processes. For this reason, we constructed a model microbial community comprised of three species dependent on trophic interactions. The three species microbial community was comprised of Clostridium cellulolyticum, Desulfovibrio vulgaris Hildenborough, and Geobacter sulfurreducens and was grown under continuous culture conditions. Cellobiose served as the carbon and energy source for C. cellulolyticum, whereas D. vulgaris and G. sulfurreducens derived carbon and energy from the metabolic products of cellobiose fermentation and were provided with sulfate and fumarate respectively as electron acceptors. RESULTS: qPCR monitoring of the culture revealed C. cellulolyticum to be dominant as expected and confirmed the presence of D. vulgaris and G. sulfurreducens. Proposed metabolic modeling of carbon and electron flow of the three-species community indicated that the growth of C. cellulolyticum and D. vulgaris were electron donor limited whereas G. sulfurreducens was electron acceptor limited. CONCLUSIONS: The results demonstrate that C. cellulolyticum, D. vulgaris, and G. sulfurreducens can be grown in coculture in a continuous culture system in which D. vulgaris and G. sulfurreducens are dependent upon the metabolic byproducts of C. cellulolyticum for nutrients. This represents a step towards developing a tractable model ecosystem comprised of members representing the functional groups of a trophic network.


Asunto(s)
Clostridium cellulolyticum/metabolismo , Desulfovibrio vulgaris/metabolismo , Geobacter/metabolismo , Anaerobiosis , Celobiosa/metabolismo , Clostridium cellulolyticum/genética , Clostridium cellulolyticum/crecimiento & desarrollo , Desulfovibrio vulgaris/genética , Desulfovibrio vulgaris/crecimiento & desarrollo , Transporte de Electrón , Metabolismo Energético , Geobacter/genética , Geobacter/crecimiento & desarrollo , Modelos Biológicos
13.
Microb Ecol ; 60(4): 784-95, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20725722

RESUMEN

Archaeal communities from mercury and uranium-contaminated freshwater stream sediments were characterized and compared to archaeal communities present in an uncontaminated stream located in the vicinity of Oak Ridge, TN, USA. The distribution of the Archaea was determined by pyrosequencing analysis of the V4 region of 16S rRNA amplified from 12 streambed surface sediments. Crenarchaeota comprised 76% of the 1,670 archaeal sequences and the remaining 24% were from Euryarchaeota. Phylogenetic analysis further classified the Crenarchaeota as a Freshwater Group, Miscellaneous Crenarchaeota group, Group I3, Rice Cluster VI and IV, Marine Group I and Marine Benthic Group B; and the Euryarchaeota into Methanomicrobiales, Methanosarcinales, Methanobacteriales, Rice Cluster III, Marine Benthic Group D, Deep Sea Hydrothermal Vent Euryarchaeota 1 and Eury 5. All groups were previously described. Both hydrogen- and acetate-dependent methanogens were found in all samples. Most of the groups (with 60% of the sequences) described in this study were not similar to any cultivated isolates, making it difficult to discern their function in the freshwater microbial community. A significant decrease in the number of sequences, as well as in the diversity of archaeal communities was found in the contaminated sites. The Marine Group I, including the ammonia oxidizer Nitrosopumilus maritimus, was the dominant group in both mercury and uranium/nitrate-contaminated sites. The uranium-contaminated site also contained a high concentration of nitrate, thus Marine Group I may play a role in nitrogen cycle.


Asunto(s)
Archaea/aislamiento & purificación , Sedimentos Geológicos/microbiología , Ríos/microbiología , Archaea/clasificación , Archaea/genética , Archaea/metabolismo , Biodiversidad , ADN de Archaea/genética , ADN Ribosómico/genética , Mercurio/metabolismo , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética , Uranio/metabolismo , Contaminantes Químicos del Agua/metabolismo
14.
mSystems ; 5(3)2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32606021

RESUMEN

Drought stress negatively impacts microbial activity, but the magnitude of stress responses is likely dependent on a diversity of belowground interactions. Populus trichocarpa individuals and no-plant bulk soils were exposed to extended drought (∼0.03% gravimetric water content [GWC] after 12 days), rewet, and a 12-day "recovery" period to determine the effects of plant presence in mediating soil microbiome stability to water stress. Plant metabolomic analyses indicated that drought exposure increased host investment in C and N metabolic pathways (amino acids, fatty acids, phenolic glycosides) regardless of recovery. Several metabolites positively correlated with root-associated microbial alpha-diversity, but not those of soil communities. Soil bacterial community composition shifted with P. trichocarpa presence and with drought relative to irrigated controls, whereas soil fungal composition shifted only with plant presence. However, root fungal communities strongly shifted with drought, whereas root bacterial communities changed to a lesser degree. The proportion of bacterial water-stress opportunistic operational taxonomic units (OTUs) (enriched counts in drought) was high (∼11%) at the end of drying phases and maintained after rewet and recovery phases in bulk soils, but it declined over time in soils with plants present. For root fungi, opportunistic OTUs were high at the end of recovery in drought treatments (∼17% abundance), although relatively not responsive in soils, particularly planted soils (<0.5% abundance for sensitive or opportunistic). These data indicate that plants modulate soil and root-associated microbial drought responses via tight plant-microbe linkages during extreme drought scenarios, but trajectories after extreme drought vary with plant habitat and microbial functional groups.IMPORTANCE Climate change causes significant alterations in precipitation and temperature regimes that are predicted to become more extreme throughout the next century. Microorganisms are important members within ecosystems, and how they respond to these changing abiotic stressors has large implications for the functioning of ecosystems, the recycling of nutrients, and the health of the aboveground plant community. Drought stress negatively impacts microbial activity, but the magnitude of this stress response may be dependent on above- and belowground interactions. This study demonstrates that beneficial associations between plants and microbes can enhance tolerance to abiotic stress.

15.
J Bacteriol ; 191(18): 5793-801, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19581361

RESUMEN

Interspecies hydrogen transfer between organisms producing and consuming hydrogen promotes the decomposition of organic matter in most anoxic environments. Although syntrophic coupling between hydrogen producers and consumers is a major feature of the carbon cycle, mechanisms for energy recovery at the extremely low free energies of reactions typical of these anaerobic communities have not been established. In this study, comparative transcriptional analysis of a model sulfate-reducing microbe, Desulfovibrio vulgaris Hildenborough, suggested the use of alternative electron transfer systems dependent on growth modality. During syntrophic growth on lactate with a hydrogenotrophic methanogen, numerous genes involved in electron transfer and energy generation were upregulated in D. vulgaris compared with their expression in sulfate-limited monocultures. In particular, genes coding for the putative membrane-bound Coo hydrogenase, two periplasmic hydrogenases (Hyd and Hyn), and the well-characterized high-molecular-weight cytochrome (Hmc) were among the most highly expressed and upregulated genes. Additionally, a predicted operon containing genes involved in lactate transport and oxidation exhibited upregulation, further suggesting an alternative pathway for electrons derived from lactate oxidation during syntrophic growth. Mutations in a subset of genes coding for Coo, Hmc, Hyd, and Hyn impaired or severely limited syntrophic growth but had little effect on growth via sulfate respiration. These results demonstrate that syntrophic growth and sulfate respiration use largely independent energy generation pathways and imply that to understand microbial processes that sustain nutrient cycling, lifestyles not captured in pure culture must be considered.


Asunto(s)
Proteínas Bacterianas/metabolismo , Desulfovibrio vulgaris/crecimiento & desarrollo , Transporte de Electrón , Regulación Bacteriana de la Expresión Génica , Sulfatos/metabolismo , Proteínas Bacterianas/genética , Biomasa , Medios de Cultivo , Desulfovibrio vulgaris/genética , Desulfovibrio vulgaris/metabolismo , Perfilación de la Expresión Génica , Hidrógeno/metabolismo , Ácido Láctico/metabolismo , Methanococcus/clasificación , Methanococcus/crecimiento & desarrollo , Mutación , Oxidación-Reducción
16.
Microbiome ; 7(1): 76, 2019 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-31103040

RESUMEN

BACKGROUND: Plants have developed defense strategies for phytopathogen and herbivore protection via coordinated metabolic mechanisms. Low-molecular weight metabolites produced within plant tissues, such as salicylic acid, represent one such mechanism which likely mediates plant - microbe interactions above and below ground. Salicylic acid is a ubiquitous phytohormone at low levels in most plants, yet are concentrated defense compounds in Populus, likely acting as a selective filter for rhizosphere microbiomes. We propagated twelve Populus trichocarpa genotypes which varied an order of magnitude in salicylic acid (SA)-related secondary metabolites, in contrasting soils from two different origins. After four months of growth, plant properties (leaf growth, chlorophyll content, and net photosynthetic rate) and plant root metabolomics specifically targeting SA metabolites were measured via GC-MS. In addition, rhizosphere microbiome composition was measured via Illumina MiSeq sequencing of 16S and ITS2 rRNA-genes. RESULTS: Soil origin was the primary filter causing divergence in bacterial/archaeal and fungal communities with plant genotype secondarily influential. Both bacterial/archaeal and fungal evenness varied between soil origins and bacterial/archaeal diversity and evenness correlated with at least one SA metabolite (diversity: populin; evenness: total phenolics). The production of individual salicylic acid derivatives that varied by host genotype resulted in compositional differences for bacteria /archaea (tremuloidin) and fungi (salicylic acid) within one soil origin (Clatskanie) whereas soils from Corvallis did not illicit microbial compositional changes due to salicylic acid derivatives. Several dominant bacterial (e.g., Betaproteobacteria, Acidobacteria, Verrucomicrobia, Chloroflexi, Gemmatimonadete, Firmicutes) and one fungal phyla (Mortierellomycota) also correlated with specific SA secondary metabolites; bacterial phyla exhibited more negative interactions (declining abundance with increasing metabolite concentration) than positive interactions. CONCLUSIONS: These results indicate microbial communities diverge most among soil origin. However, within a soil origin, bacterial/archaeal communities are responsive to plant SA production within greenhouse-based rhizosphere microbiomes. Fungal microbiomes are impacted by root SA-metabolites, but overall to a lesser degree within this experimental context. These results suggest plant defense strategies, such as SA and its secondary metabolites, may partially drive patterns of both bacterial/archaeal and fungal taxa-specific colonization and assembly.


Asunto(s)
Microbiota , Populus/genética , Populus/microbiología , Rizosfera , Microbiología del Suelo , Archaea/clasificación , Bacterias/clasificación , Hongos/clasificación , Genotipo , Metabolómica , Raíces de Plantas/microbiología , Populus/metabolismo , ARN Ribosómico 16S/genética , Ácido Salicílico/metabolismo , Metabolismo Secundario , Análisis de Secuencia de ADN
17.
Environ Microbiol Rep ; 11(4): 548-557, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30970176

RESUMEN

Serendipitaceae represents a diverse fungal group in the Basidiomycota that includes endophytes and lineages that repeatedly evolved ericoid, orchid and ectomycorrhizal lifestyle. Plants rely upon both nitrogen and phosphorous, for essential growth processes, and are often provided by mycorrhizal fungi. In this study, we investigated the cellular proteome of Serendipita vermifera MAFF305830 and closely related Serendipita vermifera subsp. bescii NFPB0129 grown in vitro under (N) ammonium and (P) phosphate starvation conditions. Mycelial growth pattern was documented under these conditions to correlate growth-specific responses to nutrient starvation. We found that N-starvation accelerated hyphal radial growth, whereas P-starvation accelerated hyphal branching. Additionally, P-starvation triggers an integrated starvation response leading to remodelling of lipid metabolism. Higher abundance of an ammonium transporter known to serve as both an ammonium sensor and stimulator of hyphal growth was detected under N-starvation. Additionally, N-starvation led to strong up-regulation of nitrate, amino acid, peptide, and urea transporters, along with several proteins predicted to have peptidase activity. Taken together, our finding suggests S. bescii and S. vermifera have the metabolic capacity for nitrogen assimilation from organic forms of N compounds. We hypothesize that the nitrogen metabolite repression is a key regulator of such organic N assimilation.


Asunto(s)
Basidiomycota/metabolismo , Endófitos/metabolismo , Metabolismo de los Lípidos , Nitrógeno/metabolismo , Fósforo/metabolismo , Compuestos de Amonio/metabolismo , Proteínas Bacterianas/metabolismo , Basidiomycota/crecimiento & desarrollo , Endófitos/crecimiento & desarrollo , Ontología de Genes , Hifa/crecimiento & desarrollo , Hifa/metabolismo , Nitrógeno/deficiencia , Fosfatos/deficiencia , Fosfatos/metabolismo , Fósforo/deficiencia , Proteoma/metabolismo , Estrés Fisiológico
18.
PLoS One ; 14(6): e0211310, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31211785

RESUMEN

Soil microbiome responses to short-term nitrogen (N) inputs remain uncertain when compared with previous research that has focused on long-term fertilization responses. Here, we examined soil bacterial/archaeal and fungal communities pre- and post-N fertilization in an 8 year-old switchgrass field, in which twenty-four plots received N fertilization at three levels (0, 100, and 200 kg N ha-1 as NH4NO3) for the first time since planting. Soils were collected at two depths, 0-5 and 5-15 cm, for DNA extraction and amplicon sequencing of 16S rRNA genes and ITS regions for assessment of microbial community composition. Baseline assessments prior to fertilization revealed no significant pre-existing divergence in either bacterial/archaeal or fungal communities across plots. The one-time N fertilizations increased switchgrass yields and tissue N content, and the added N was nearly completely removed from the soil of fertilized plots by the end of the growing season. Both bacterial/archaeal and fungal communities showed large spatial (by depth) and temporal variation (by season) within each plot, accounting for 17 and 12-22% of the variation as calculated from the Sq. root of PERMANOVA tests for bacterial/archaeal and fungal community composition, respectively. While N fertilization effects accounted for only ~4% of overall variation, some specific microbial groups, including the bacterial genus Pseudonocardia and the fungal genus Archaeorhizomyces, were notably repressed by fertilization at 200 kg N ha-1. Bacterial groups varied with both depth in the soil profile and time of sampling, while temporal variability shaped the fungal community more significantly than vertical heterogeneity in the soil. These results suggest that short-term effects of N fertilization are significant but subtle, and other sources of variation will need to be carefully accounted for study designs including multiple intra-annual sampling dates, rather than one-time "snapshot" analyses that are common in the literature. Continued analyses of these trends over time with fertilization and management are needed to understand how these effects may persist or change over time.


Asunto(s)
Fertilizantes , Microbiota/efectos de los fármacos , Nitrógeno/farmacología , Panicum/microbiología , Microbiología del Suelo , Agricultura/métodos , Bacterias/aislamiento & purificación , Hongos/aislamiento & purificación , Microbiota/genética , ARN Ribosómico 16S/genética , Estaciones del Año , Análisis Espacio-Temporal
19.
BMC Genomics ; 9: 42, 2008 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-18221523

RESUMEN

BACKGROUND: The Arc two-component system is a global regulator controlling many genes involved in aerobic/anaerobic respiration and fermentative metabolism in Escherichia coli. Shewanella oneidensis MR-1 contains a gene encoding a putative ArcA homolog with ~81% amino acid sequence identity to the E. coli ArcA protein but not a full-length arcB gene. RESULTS: To understand the role of ArcA in S. oneidensis, an arcA deletion strain was constructed and subjected to both physiological characterization and microarray analysis. Compared to the wild-type MR-1, the mutant exhibited impaired aerobic growth and a defect in utilizing DMSO in the absence of O2. Microarray analyses on cells grown aerobically and anaerobically on fumarate revealed that expression of 1009 genes was significantly affected (p < 0.05) by the mutation. In contrast to E. coli ArcA, the protein appears to be dispensable in regulation of the TCA cycle in S. oneidensis. To further determine genes regulated by the Arc system, an ArcA recognition weight matrix from DNA-binding data and bioinformatics analysis was generated and used to produce an ArcA sequence affinity map. By combining both techniques, we identified an ArcA regulon of at least 50 operons, of which only 6 were found to be directly controlled by ArcA in E. coli. CONCLUSION: These results indicate that the Arc system in S. oneidensis differs from that in E. coli substantially in terms of its physiological function and regulon while their binding motif are strikingly similar.


Asunto(s)
Genes Bacterianos , Regulón , Shewanella/genética , Aerobiosis/genética , Anaerobiosis/genética , Proteínas de la Membrana Bacteriana Externa/genética , Secuencia de Bases , ADN Bacteriano/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Eliminación de Gen , Perfilación de la Expresión Génica , Genómica , Familia de Multigenes , Operón , Proteínas Represoras/genética , Shewanella/fisiología , Especificidad de la Especie
20.
Biotechnol Biofuels ; 11: 34, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29449882

RESUMEN

BACKGROUND: Lignin is a natural polymer that is interwoven with cellulose and hemicellulose within plant cell walls. Due to this molecular arrangement, lignin is a major contributor to the recalcitrance of plant materials with respect to the extraction of sugars and their fermentation into ethanol, butanol, and other potential bioenergy crops. The lignin biosynthetic pathway is similar, but not identical in different plant species. It is in each case comprised of a moderate number of enzymatic steps, but its responses to manipulations, such as gene knock-downs, are complicated by the fact that several of the key enzymes are involved in several reaction steps. This feature poses a challenge to bioenergy production, as it renders it difficult to select the most promising combinations of genetic manipulations for the optimization of lignin composition and amount. RESULTS: Here, we present several computational models than can aid in the analysis of data characterizing lignin biosynthesis. While minimizing technical details, we focus on the questions of what types of data are particularly useful for modeling and what genuine benefits the biofuel researcher may gain from the resulting models. We demonstrate our analysis with mathematical models for black cottonwood (Populus trichocarpa), alfalfa (Medicago truncatula), switchgrass (Panicum virgatum) and the grass Brachypodium distachyon. CONCLUSIONS: Despite commonality in pathway structure, different plant species show different regulatory features and distinct spatial and topological characteristics. The putative lignin biosynthes pathway is not able to explain the plant specific laboratory data, and the necessity of plant specific modeling should be heeded.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA