Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 24(25): 15265-15270, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35723233

RESUMEN

The dynamics within an O(2 × 1) adlayer on Ru(0001) is studied by density functional theory and high-speed scanning tunneling microscopy. Transition state theory proposes dynamic oxygen species in the reduced O(2 × 1) layer at room temperature. Collective diffusion processes can result in structural reorientations of characteristic stripe patterns. Spiral high-speed scanning tunneling microscopy measurements reveal this reorientation as a function of time in real space. Measurements, ranging over several minutes with constantly high frame rates of 20 Hz resolved the gradual reorientation. Moreover, reversible fast flipping events of stripe patterns are observed. These measurements relate the observations of long-term atomic rearrangements and their underlying fast processes captured within several tens of milliseconds.

2.
Phys Chem Chem Phys ; 24(48): 29721-29730, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36454101

RESUMEN

Silica bilayers are stable on various metal substrates, including Ru(0001) that is used for the present study. In a systematic attempt to elucidate the detailed structure of the silica bilayer film and its registry to the metal substrate, we performed a low energy electron diffraction (I/V-LEED) study. The experimental work is accompanied by detailed calculations on the stability, orientation and dynamic properties of the bilayer at room temperature. It was determined, that the film shows a certain structural diversity within the unit cell of the metal substrate, which depends on the oxygen content at the metal-bilayer interface. In connection with the experimental I/V-LEED study, it became apparent, that a high-quality structure determination is only possible if several structural motifs are taken into account by superimposing bilayer structures with varying registry to the oxygen covered substrate. This result is conceptually in line with the recently observed statistical registry in layered 2D-compound materials.

3.
Chemistry ; 27(6): 1870-1885, 2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33118653

RESUMEN

The present review reports on the preparation and atomic-scale characterization of the thinnest possible films of the glass-forming materials silica and germania. To this end state-of-the-art surface science techniques, in particular scanning probe microscopy, and density functional theory calculations have been employed. The investigated films range from monolayer to bilayer coverage where both, the crystalline and the amorphous films, contain characteristic XO4 (X=Si,Ge) building blocks. A side-by-side comparison of silica and germania monolayer, zigzag phase and bilayer films supported on Mo(112), Ru(0001), Pt(111), and Au(111) leads to a more general comprehension of the network structure of glass former materials. This allows us to understand the crucial role of the metal support for the pathway from crystalline to amorphous ultrathin film growth.

4.
Angew Chem Int Ed Engl ; 59(24): 9549-9555, 2020 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-32126147

RESUMEN

Demonstrated here is a supramolecular approach to fabricate highly ordered monolayered hydrogen- and halogen-bonded graphyne-like two-dimensional (2D) materials from triethynyltriazine derivatives on Au(111) and Ag(111). The 2D networks are stabilized by N⋅⋅⋅H-C(sp) bonds and N⋅⋅⋅Br-C(sp) bonds to the triazine core. The structural properties and the binding energies of the supramolecular graphynes have been investigated by scanning tunneling microscopy in combination with density-functional theory calculations. It is revealed that the N⋅⋅⋅Br-C(sp) bonds lead to significantly stronger bonded networks compared to the hydrogen-bonded networks. A systematic analysis of the binding energies of triethynyltriazine and triethynylbenzene derivatives further demonstrates that the X3 -synthon, which is commonly observed for bromobenzene derivatives, is weaker than the X6 -synthon for our bromotriethynyl derivatives.

5.
Small ; 15(12): e1804713, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30748106

RESUMEN

Molecular recognition is a crucial driving force for molecular self-assembly. In many cases molecules arrange in the lowest energy configuration following a lock-and-key principle. When molecular flexibility comes into play, the induced-fit effect may govern the self-assembly. Here, the self-assembly of dicyanovinyl-hexathiophene (DCV6T) molecules, a prototype specie for highly efficient organic solar cells, on Au(111) by using low-temperature scanning tunneling microscopy and atomic force microscopy is investigated. DCV6T molecules assemble on the surface forming either islands or chains. In the islands the molecules are straight-the lowest energy configuration in gas phase-and expose the dicyano moieties to form hydrogen bonds with neighbor molecules. In contrast, the structure of DCV6T molecules in the chain assemblies deviates significantly from their gas-phase analogues. The seemingly energetically unfavorable bent geometry is enforced by hydrogen-bonding intermolecular interactions. Density functional theory calculations of molecular dimers quantitatively demonstrate that the deformation of individual molecules optimizes the intermolecular bonding structure. The intermolecular bonding energy thus drives the chain structure formation, which is an expression of the induced-fit effect.

6.
Phys Chem Chem Phys ; 17(40): 27118-26, 2015 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-26414934

RESUMEN

Dicyanovinyl (DCV)-substituted oligothiophenes are promising donor materials in vacuum-processed small-molecule organic solar cells. Here, we studied the structural and the electronic properties of DCV-dimethyl-pentathiophene (DCV5T-Me2) adsorbed on Au(111) from submonolayer to multilayer coverages. Using a multi-technique experimental approach (low-temperature scanning tunneling microscopy/spectroscopy (STM/STS), atomic force microscopy (AFM), and two-photon photoemission (2PPE) spectroscopy), we determined the energetic position of several affinity levels as well as ionization potentials originating from the lowest unoccupied molecular orbitals (LUMO) and the highest occupied molecular orbitals (HOMO), evidencing a transport gap of 1.4 eV. Proof of an excitonic state was found to be a spectroscopic feature located at 0.6 eV below the LUMO affinity level. With increasing coverage photoemission from excitonic states gains importance. We were able to track the dynamics of several electronically excited states of multilayers by means of femtosecond time-resolved 2PPE. We resolved an intriguing relaxation dynamics involving four processes, ranging from sub-picosecond (ps) to several hundred ps time spans. These show a tendency to increase with increasing coverage. The present study provides important parameters such as energetic positions of transport levels as well as lifetimes of electronically excited states, which are essential for designing organic-molecule-based optoelectronic devices.

7.
Adv Mater ; 34(40): e2206222, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35998374

RESUMEN

Large energy loss (Eloss ) caused by defect-assisted recombination makes the photovoltaic performance of carbon-based perovskite solar cells (C-PSCs) inferior to that of metal-electrode ones. Herein, the influence of environmental factors (moisture and oxygen) on defect management during re-annealing process of CsPbI2 Br crystalline films is systematically studied. Density functional theory and experimental results indicate that moisture in the air can significantly reduce the oxidation kinetics of crystalline films, resulting in orderly oxidation. Concomitantly, the oxidation decomposition products PbO and CsPbIBr2 are enriched at grain boundaries, passivating surface defects efficiently. Simultaneously, energy band coupling between CsPbI2 Br and CsPbIBr2 improves the hole extraction efficiency. The photovoltage of corresponding C-PSCs is increased from 1.05 to 1.32 V, indicating a reduced Eloss derived from orderly oxidation strategy. Correspondingly, the champion cell achieves an efficiency of 15.27%, and a certified efficiency of 14.7%, which is a new record efficiency for CsPbI2 Br C-PSCs.

8.
Rev Sci Instrum ; 93(5): 053704, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35649753

RESUMEN

We present the design and development of a variable-temperature high-speed scanning tunneling microscope (STM). The setup consists of a two-chamber ultra-high vacuum system, including a preparation and a main chamber. The preparation chamber is equipped with standard preparation tools for sample cleaning and film growth. The main chamber hosts the STM that is located within a continuous flow cryostat for counter-cooling during high-temperature measurements. The microscope body is compact, rigid, and highly symmetric to ensure vibrational stability and low thermal drift. We designed a hybrid scanner made of two independent tube piezos for slow and fast scanning, respectively. A commercial STM controller is used for slow scanning, while a high-speed Versa Module Eurocard bus system controls fast scanning. Here, we implement non-conventional spiral geometries for high-speed scanning, which consist of smooth sine and cosine signals created by an arbitrary waveform generator. The tip scans in a quasi-constant height mode, where the logarithm of the tunneling current signal can be regarded as roughly proportional to the surface topography. Scan control and data acquisition have been programmed in the experimental physics and industrial control system framework. With the spiral scans, we atomically resolved diffusion processes of oxygen atoms on the Ru(0001) surface and achieved a time resolution of 8.3 ms per frame at different temperatures. Variable-temperature measurements reveal an influence of the temperature on the oxygen diffusion rate.

9.
J Phys Chem C Nanomater Interfaces ; 126(7): 3736-3742, 2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35242273

RESUMEN

Silica films represent a unique two-dimensional film system, exhibiting both crystalline and vitreous forms. While much scientific work has focused on the atomic-scale features of this film system, mesoscale structures can play an important role for understanding confined space reactions and other applications of silica films. Here, we report on mesoscale structures in silica films grown under ultrahigh vacuum and examined with scanning tunneling microscopy (STM). Silica films can exhibit coexisting phases of monolayer, zigzag, and bilayer structures. Both holes in the film structure and atomic-scale substrate steps are observed to influence these coexisting phases. In particular, film regions bordering holes in silica bilayer films exhibit vitreous character, even in regions where the majority film structure is crystalline. At high coverages mixed zigzag and bilayer phases are observed at step edges, while at lower coverages silica phases with lower silicon densities are observed more prevalently near step edges. The STM images reveal that silica films exhibit rich structural diversity at the mesoscale.

10.
ACS Nano ; 14(12): 16887-16896, 2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33238103

RESUMEN

Graphyne-based two-dimensional (2D) carbon allotropes feature extraordinary physical properties; however, their synthesis as crystalline single-layered materials has remained challenging. We report on the fabrication of large-area organometallic Ag-bis-acetylide networks and their structural and electronic properties on Ag(111) using low-temperature scanning tunneling microscopy combined with density functional theory (DFT) calculations. The metalated graphyne-based networks are robust at room temperature and assembled in a bottom-up approach via surface-assisted dehalogenative homocoupling of terminal alkynyl bromides. Large-area networks of several hundred nanometers with topological defects at domain boundaries are obtained due to the Ag-acetylide bonds' reversible nature. The thermodynamically controlled growth mechanism is explained through the direct observation of intermediates, which differ on Ag(111) and Au(111). Scanning tunneling spectroscopy resolved unoccupied states delocalized across the network. The energy of these states can be shifted locally by the attachment of a different number of Br atoms within the network. DFT revealed that free-standing metal-bis-acetylide networks are semimetals with a linear band dispersion around several high-symmetry points, which suggest the presence of Weyl points. These results demonstrate that the organometallic Ag-bis-acetylide networks feature the typical 2D material properties, which make them of great interest for fundamental studies and electronic materials in devices.

11.
Chem Commun (Camb) ; 54(82): 11554-11557, 2018 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-30272078

RESUMEN

Based on scanning tunneling microscopy experiments combined with density functional theory, we report the formation and the electronic structure of porous binary supramolecular networks on Au(111). The two triphenylamine derivatives with identical scaffolds intermix due to a maximization of the overall number of H-bonds instead of an optimization of the H-bond strength in the bonding motif. The HOMO-LUMO gap is defined by both molecules, which is typical for electron donor-acceptor networks.

12.
Nanoscale ; 10(8): 3769-3776, 2018 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-29411828

RESUMEN

The electronic structure of surface-supported organometallic networks with Ag-bis-acetylide bonds that are intermediate products in the bottom-up synthesis of graphdiyne and graphdiyne-like networks were studied. Scanning tunneling microscopy (STM) and spectroscopy (STS) reveal a frontier, unoccupied electronic state that is delocalized along the entire organometallic network and proves the covalent nature of the Ag-bis-acetylide bonds. Density-functional theory (DFT) calculations corroborate the spatial distribution of the observed delocalized state and attribute it to band mixing of carbon and silver atoms combined with n-doping of the metal surface. The metal-bis-acetylide bonds are typical metal-organic bonds with mixed character containing covalent and strong ionic contributions. Moreover, the organometallic networks exhibit a characteristic graphene-like band structure with linear band dispersion at each K point.

13.
Nat Commun ; 8: 14765, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28322232

RESUMEN

The fabrication of nanostructures in a bottom-up approach from specific molecular precursors offers the opportunity to create tailored materials for applications in nanoelectronics. However, the formation of defect-free two-dimensional (2D) covalent networks remains a challenge, which makes it difficult to unveil their electronic structure. Here we report on the hierarchical on-surface synthesis of nearly defect-free 2D covalent architectures with carbonyl-functionalized pores on Au(111), which is investigated by low-temperature scanning tunnelling microscopy in combination with density functional theory calculations. The carbonyl-bridged triphenylamine precursors form six-membered macrocycles and one-dimensional (1D) chains as intermediates in an Ullmann-type coupling reaction that are subsequently interlinked to 2D networks. The electronic band gap is narrowed when going from the monomer to 1D and 2D surface-confined π-conjugated organic polymers comprising the same building block. The significant drop of the electronic gap from the monomer to the polymer confirms an efficient conjugation along the triphenylamine units within the nanostructures.

14.
ACS Nano ; 8(10): 10715-22, 2014 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-25244124

RESUMEN

Dicyanovinyl-quinquethiophene (DCV5T-Me2) is a prototype conjugated oligomer for highly efficient organic solar cells. This class of oligothiophenes are built up by an electron-rich donor (D) backbone and terminal electron-deficient acceptor (A) moieties. Here, we investigated its structural and electronic properties when it is adsorbed on a Au(111) surface using low temperature scanning tunneling microscopy/spectroscopy (STM/STS) and atomic force microscopy (AFM). We find that DCV5T-Me2 self-assembles in extended chains, stabilized by intercalated Au atoms. The effect of metal-ligand hybridization with Au adatoms causes an energetic downshift of the DCV5T-Me2 lowest unoccupied molecular orbital (LUMO) with respect to the uncoordinated molecules on the surface. The asymmetric coordination of a gold atom to only one molecular end group leads to an asymmetric localization of the LUMO and LUMO+1 states at opposite sides. Using model density functional theory (DFT) calculations, we explain such orbital reshaping as a consequence of linear combinations of the original LUMO and LUMO+1 orbitals, mixed by the attachment of a bridging Au adatom. Our study shows that the alignment of molecular orbitals and their distribution within individual molecules can be modified by contacting them to metal atoms in specific sites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA