Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Chem Biol ; 14(9): 876-886, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30120361

RESUMEN

Signals from 800 G-protein-coupled receptors (GPCRs) to many SH3 domain-containing proteins (SH3-CPs) regulate important physiological functions. These GPCRs may share a common pathway by signaling to SH3-CPs via agonist-dependent arrestin recruitment rather than through direct interactions. In the present study, 19F-NMR and cellular studies revealed that downstream of GPCR activation engagement of the receptor-phospho-tail with arrestin allosterically regulates the specific conformational states and functional outcomes of remote ß-arrestin 1 proline regions (PRs). The observed NMR chemical shifts of arrestin PRs were consistent with the intrinsic efficacy and specificity of SH3 domain recruitment, which was controlled by defined propagation pathways. Moreover, in vitro reconstitution experiments and biophysical results showed that the receptor-arrestin complex promoted SRC kinase activity through an allosteric mechanism. Thus, allosteric regulation of the conformational states of ß-arrestin 1 PRs by GPCRs and the allosteric activation of downstream effectors by arrestin are two important mechanisms underlying GPCR-to-SH3-CP signaling.


Asunto(s)
Regulación Alostérica , Arrestina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Dominios Homologos src , Células Cultivadas , Células HEK293 , Humanos
2.
Angew Chem Int Ed Engl ; 58(46): 16480-16484, 2019 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-31584750

RESUMEN

Electrochemical sensors are essential for point-of-care testing (POCT) and wearable sensing devices. Establishing an efficient electron transfer route between redox enzymes and electrodes is key for converting enzyme-catalyzed reactions into electrochemical signals, and for the development of robust, sensitive, and selective biosensors. We demonstrate that the site-specific incorporation of a novel synthetic amino acid (2-amino-3-(4-mercaptophenyl)propanoic acid) into redox enzymes, followed by an S-click reaction to wire the enzyme to the electrode, facilitates electron transfer. The fabricated biosensor demonstrated real-time and selective monitoring of tryptophan (Trp) in blood and sweat samples, with a linear range of 0.02-0.8 mm. Further developments along this route may result in dramatic expansion of portable electrochemical sensors for diverse health-determination molecules.


Asunto(s)
Oxidorreductasas/metabolismo , Técnicas Biosensibles/métodos , Técnicas Electroquímicas , Electrodos , Transporte de Electrón , Células HeLa , Humanos , Oxidorreductasas/química , Sistemas de Atención de Punto , Sudor/metabolismo , Triptófano/análisis , Triptófano/sangre , Triptófano Oxigenasa/química , Triptófano Oxigenasa/metabolismo , Dispositivos Electrónicos Vestibles
3.
Nat Commun ; 11(1): 4857, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32978402

RESUMEN

Characterization of the dynamic conformational changes in membrane protein signaling complexes by nuclear magnetic resonance (NMR) spectroscopy remains challenging. Here we report the site-specific incorporation of 4-trimethylsilyl phenylalanine (TMSiPhe) into proteins, through genetic code expansion. Crystallographic analysis revealed structural changes that reshaped the TMSiPhe-specific amino-acyl tRNA synthetase active site to selectively accommodate the trimethylsilyl (TMSi) group. The unique up-field 1H-NMR chemical shift and the highly efficient incorporation of TMSiPhe enabled the characterization of multiple conformational states of a phospho-ß2 adrenergic receptor/ß-arrestin-1(ß-arr1) membrane protein signaling complex, using only 5 µM protein and 20 min of spectrum accumulation time. We further showed that extracellular ligands induced conformational changes located in the polar core or ERK interaction site of ß-arr1 via direct receptor transmembrane core interactions. These observations provided direct delineation and key mechanism insights that multiple receptor ligands were able to induce distinct functionally relevant conformational changes of arrestin.


Asunto(s)
Arrestina/química , Arrestina/genética , Arrestina/metabolismo , Ligandos , Espectroscopía de Protones por Resonancia Magnética/métodos , Sitios de Unión , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Fenilalanina , Unión Proteica , Conformación Proteica , Receptores Adrenérgicos beta 2/metabolismo , Transducción de Señal , beta-Arrestina 1/química , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo
4.
FEBS J ; 283(1): 102-11, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26462166

RESUMEN

UNLABELLED: Microtubules are dynamic assemblies of αß-tubulin heterodimers and have been recognized as highly attractive targets for cancer chemotherapy. A broad range of agents bind to tubulin and interfere with microtubule assembly. Despite having a long history of characterization, colchicine binding site inhibitors (CBSIs) have not yet reached the commercial phase as anti-cancer drugs to date. We determined the structures of tubulin complexed with a set of structurally diverse CBSIs (lexibulin, nocodazole, plinabulin and tivantinib), among which nocodazole and tivantinib are both binary-function inhibitors targeting cancer-related kinases and microtubules simultaneously. High resolution structures revealed the detailed interactions between these ligands and tubulin. Our results showed that the binding modes of the CBSIs were different from previous docking models, highlighting the importance of crystal structure information in structure-based drug design. A real structure-based pharmacophore was proposed to rationalize key common interactions of the CBSIs at the colchicine domain. Our studies provide a solid structural basis for developing new anti-cancer agents for the colchicine binding site. DATABASE: The atomic coordinates and structure factors for tubulin complexed with lexibulin, nocodazole, plinabulin and tivantinib have been deposited in the Protein Data Bank under accession codes 5CA0, 5CA1, 5C8Y and 5CB4, respectively.


Asunto(s)
Antineoplásicos/farmacología , Colchicina/farmacología , Descubrimiento de Drogas , Moduladores de Tubulina/farmacología , Tubulina (Proteína)/metabolismo , Animales , Antineoplásicos/química , Sitios de Unión/efectos de los fármacos , Colchicina/química , Dicetopiperazinas/química , Dicetopiperazinas/farmacología , Ligandos , Microtúbulos/efectos de los fármacos , Modelos Moleculares , Estructura Molecular , Nocodazol/química , Nocodazol/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas/metabolismo , Pirrolidinonas/química , Pirrolidinonas/farmacología , Quinolinas/química , Quinolinas/farmacología , Relación Estructura-Actividad , Porcinos , Tubulina (Proteína)/química , Moduladores de Tubulina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA