Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Cardiovasc Pharmacol ; 83(2): 193-204, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38030139

RESUMEN

ABSTRACT: Dapagliflozin (DAPA) is a novel oral hypoglycemic agent, and there is increasing evidence that DAPA has a protective effect against cardiovascular disease. The study aimed to investigate how DAPA inhibits cardiac hypertrophy and explore its potential mechanisms. By continuously infusing isoprenaline (ISO) for 2 weeks using a subcutaneous osmotic pump, a cardiac hypertrophic model was established in male C57BL/6 mice. On day 14 after surgery, echocardiography showed that left ventricle mass (LV mass), interventricular septum, left ventricle posterior wall diastole, and left ventricular posterior wall systole were significantly increased, and ejection fraction was decreased compared with control mice. Masson and Wheat Germ Agglutinin staining indicated enhanced myocardial fibrosis and cell morphology compared with control mice. Importantly, these effects were inhibited by DAPA treatment in ISO-induced mice. In H9c2 cells and neonatal rat cardiomyocytes, we found that mitochondrial fragmentation and mitochondrial oxidative stress were significantly augmented in the ISO-induced group. However, DAPA rescued the cardiac hypertrophy in ISO-induced H9c2 cells and neonatal rat cardiomyocytes. Mechanistically, we found that DAPA restored the PIM1 activity in ISO-induced H9c2 cells and subsequent increase in dynamin-associated protein 1 (Drp1) phosphorylation at S616 and decrease in Drp1 phosphorylation at S637 in ISO-induced cells. We found that DAPA mitigated ISO-induced cardiac hypertrophy by suppressing Drp1-mediated mitochondrial fission in a PIM1-dependent fashion.


Asunto(s)
Compuestos de Bencidrilo , Cardiomegalia , Glucósidos , Dinámicas Mitocondriales , Ratas , Ratones , Masculino , Animales , Isoproterenol/farmacología , Ratones Endogámicos C57BL , Cardiomegalia/metabolismo , Miocitos Cardíacos
2.
J Cardiovasc Pharmacol ; 79(6): 925-934, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35234738

RESUMEN

ABSTRACT: Activation of adventitial fibroblasts (AFs) on vascular injury contributes to vascular remodeling. Hydrogen sulfide (H2S), a gaseous signal molecule, modulates various cardiovascular functions. The aim of this study was to explore whether exogenous H2S ameliorates transforming growth factor-ß1 (TGF-ß1)-induced activation of AFs and, if so, to determine the underlying molecular mechanisms. Immunofluorescent staining and western blot were used to determine the expression of collagen I and α-smooth muscle actin. The proliferation and migration of AFs were performed by using cell counting Kit-8 and transwell assay, respectively. The mitochondrial morphology was assessed by using MitoTracker Red staining. The activation of signaling pathway was evaluated by western blot. The mitochondrial reactive oxygen species and mitochondrial membrane potential were determined by MitoSOX and JC-1 (5,5',6,6'-tetrachloro-1,1,3,3'-tetraethylbenzimidazolyl carbocyanine iodide) staining. Our study demonstrated exogenous H2S treatment dramatically suppressed TGF-ß1-induced AF proliferation, migration, and phenotypic transition by blockage of dynamin-related protein 1 (Drp1)-mediated mitochondrial fission and regulated mitochondrial reactive oxygen species generation. Moreover, exogenous H2S reversed TGF-ß1-induced mitochondrial fission and AF activation by modulating Rho-associated protein kinase 1-dependent phosphorylation of Drp1. In conclusion, our results suggested that exogenous H2S attenuates TGF-ß1-induced AF activation through suppression of Drp1-mediated mitochondrial fission in a Rho-associated protein kinase 1-dependent fashion.


Asunto(s)
Sulfuro de Hidrógeno , Dinámicas Mitocondriales , Células Cultivadas , Fibroblastos/metabolismo , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/farmacología , Especies Reactivas de Oxígeno/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/farmacología
3.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(4): 1078-1084, 2024 Aug.
Artículo en Zh | MEDLINE | ID: mdl-39192401

RESUMEN

OBJECTIVE: To investigate the anti- chronic myelogenous leukemia (CML) activity of Nur77-specific agonist Csn-B combined with imatinib by promoting Nur77 expression, and explore the potential role of its signaling pathway. METHODS: Firstly, CCK-8 and Transwell assay were used to detect the inhibitory effects of Csn-B, imatinib, and their combination on the proliferation and migration of K562 cells. Furthermore, the apoptosis rate of K562 cells treated with Csn-B, imatinib, and their combination was detected by flow cytometry. The expression levels of Nur77, Pim-1, Drp1, p-Drp1 S616, Bcl-2 and Bax in K562 cells were detected by Western blot. Finally, the expression levels of reactive oxygen species (ROS) in K562 cells treated with Csn-B, imatinib and their combination were detected by immunofluorescence assay. RESULTS: The level of Nur77 in CML patients decreased significantly compared with normal population in dataset of GSE43754 (P < 0.001). Csn-B combined with imatinib could significantly inhibit the proliferation and migration of K562 cells (both P < 0.001), and induce apoptosis (P < 0.001). Csn-B promoted Nur77 expression in K562 cells, and synergistically enhanced imatinib sensitivity when combined with imatinib. Csn-B combined with imatinib could significantly enhanced ROS levels in K562 cells and mitochondria compared with single-drug treatment (both P < 0.001). CONCLUSION: Csn-B combined with imatinib can enhance ROS expression and induce apoptosis of K562 cells through Nur77/Pim-1/Drp1 pathway.


Asunto(s)
Apoptosis , Proliferación Celular , Mesilato de Imatinib , Leucemia Mielógena Crónica BCR-ABL Positiva , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares , Proteínas Proto-Oncogénicas c-pim-1 , Humanos , Mesilato de Imatinib/farmacología , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Células K562 , Proliferación Celular/efectos de los fármacos , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Dinaminas , Transducción de Señal , Especies Reactivas de Oxígeno/metabolismo , Movimiento Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA