Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell ; 36(6): 2219-2237, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38518124

RESUMEN

Arabidopsis (Arabidopsis thaliana) PROTEIN ARGININE METHYLTRANSFERASE5 (PRMT5) post-translationally modifies RNA-binding proteins by arginine (R) methylation. However, the impact of this modification on the regulation of RNA processing is largely unknown. We used the spliceosome component, SM-LIKE PROTEIN 4 (LSM4), as a paradigm to study the role of R-methylation in RNA processing. We found that LSM4 regulates alternative splicing (AS) of a suite of its in vivo targets identified here. The lsm4 and prmt5 mutants show a considerable overlap of genes with altered AS raising the possibility that splicing of those genes could be regulated by PRMT5-dependent LSM4 methylation. Indeed, LSM4 methylation impacts AS, particularly of genes linked with stress response. Wild-type LSM4 and an unmethylable version complement the lsm4-1 mutant, suggesting that methylation is not critical for growth in normal environments. However, LSM4 methylation increases with abscisic acid and is necessary for plants to grow under abiotic stress. Conversely, bacterial infection reduces LSM4 methylation, and plants that express unmethylable-LSM4 are more resistant to Pseudomonas than those expressing wild-type LSM4. This tolerance correlates with decreased intron retention of immune-response genes upon infection. Taken together, this provides direct evidence that R-methylation adjusts LSM4 function on pre-mRNA splicing in an antagonistic manner in response to biotic and abiotic stress.


Asunto(s)
Empalme Alternativo , Proteínas de Arabidopsis , Arabidopsis , Arginina , Regulación de la Expresión Génica de las Plantas , Proteína-Arginina N-Metiltransferasas , Estrés Fisiológico , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Empalme Alternativo/genética , Metilación , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Estrés Fisiológico/genética , Arginina/metabolismo , Ácido Abscísico/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Mutación/genética
2.
Plant Physiol ; 192(3): 2436-2456, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37017001

RESUMEN

Many molecular and physiological processes in plants occur at a specific time of day. These daily rhythms are coordinated in part by the circadian clock, a timekeeper that uses daylength and temperature to maintain rhythms of ∼24 h in various clock-regulated phenotypes. The circadian MYB-like transcription factor REVEILLE 8 (RVE8) interacts with its transcriptional coactivators NIGHT LIGHT-INDUCIBLE AND CLOCK-REGULATED 1 (LNK1) and LNK2 to promote the expression of evening-phased clock genes and cold tolerance factors. While genetic approaches have commonly been used to discover connections within the clock and between clock elements and other pathways, here, we used affinity purification coupled with mass spectrometry (APMS) to identify time-of-day-specific protein interactors of the RVE8-LNK1/LNK2 complex in Arabidopsis (Arabidopsis thaliana). Among the interactors of RVE8/LNK1/LNK2 were COLD-REGULATED GENE 27 (COR27) and COR28, which coprecipitated in an evening-specific manner. In addition to COR27 and COR28, we found an enrichment of temperature-related interactors that led us to establish a previously uncharacterized role for LNK1 and LNK2 in temperature entrainment of the clock. We established that RVE8, LNK1, and either COR27 or COR28 form a tripartite complex in yeast (Saccharomyces cerevisiae) and that the effect of this interaction in planta serves to antagonize transcriptional activation of RVE8 target genes, potentially through mediating RVE8 protein degradation in the evening. Together, these results illustrate how a proteomic approach can be used to identify time-of-day-specific protein interactions. Discovery of the RVE8-LNK-COR protein complex indicates a previously unknown regulatory mechanism for circadian and temperature signaling pathways.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Relojes Circadianos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteómica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Arabidopsis/metabolismo , Relojes Circadianos/genética , Ritmo Circadiano/genética , Regulación de la Expresión Génica de las Plantas , Proteínas Represoras/metabolismo
3.
Plant Physiol ; 191(2): 1036-1051, 2023 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-36423226

RESUMEN

Plants undergo transcriptome reprograming to adapt to daily and seasonal fluctuations in light and temperature conditions. While most efforts have focused on the role of master transcription factors, the importance of splicing factors modulating these processes is now emerging. Efficient pre-mRNA splicing depends on proper spliceosome assembly, which in plants and animals requires the methylosome complex. Ion Chloride nucleotide-sensitive protein (PICLN) is part of the methylosome complex in both humans and Arabidopsis (Arabidopsis thaliana), and we show here that the human PICLN ortholog rescues phenotypes of Arabidopsis picln mutants. Altered photomorphogenic and photoperiodic responses in Arabidopsis picln mutants are associated with changes in pre-mRNA splicing that partially overlap with those in PROTEIN ARGININE METHYL TRANSFERASE5 (prmt5) mutants. Mammalian PICLN also acts in concert with the Survival Motor Neuron (SMN) complex component GEMIN2 to modulate the late steps of UsnRNP assembly, and many alternative splicing events regulated by PICLN but not PRMT5, the main protein of the methylosome, are controlled by Arabidopsis GEMIN2. As with GEMIN2 and SM PROTEIN E1/PORCUPINE (SME1/PCP), low temperature, which increases PICLN expression, aggravates morphological and molecular defects of picln mutants. Taken together, these results establish a key role for PICLN in the regulation of pre-mRNA splicing and in mediating plant adaptation to daily and seasonal fluctuations in environmental conditions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Humanos , Animales , Empalme Alternativo/genética , Arabidopsis/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Temperatura , Empalme del ARN/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Mamíferos/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo
4.
PLoS Pathog ; 17(1): e1009161, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33444413

RESUMEN

We report the emergency development and application of a robust serologic test to evaluate acute and convalescent antibody responses to SARS-CoV-2 in Argentina. The assays, COVIDAR IgG and IgM, which were produced and provided for free to health authorities, private and public health institutions and nursing homes, use a combination of a trimer stabilized spike protein and the receptor binding domain (RBD) in a single enzyme-linked immunosorbent assay (ELISA) plate. Over half million tests have already been distributed to detect and quantify antibodies for multiple purposes, including assessment of immune responses in hospitalized patients and large seroprevalence studies in neighborhoods, slums and health care workers, which resulted in a powerful tool for asymptomatic detection and policy making in the country. Analysis of antibody levels and longitudinal studies of symptomatic and asymptomatic SARS-CoV-2 infections in over one thousand patient samples provided insightful information about IgM and IgG seroconversion time and kinetics, and IgM waning profiles. At least 35% of patients showed seroconversion within 7 days, and 95% within 45 days of symptoms onset, with simultaneous or close sequential IgM and IgG detection. Longitudinal studies of asymptomatic cases showed a wide range of antibody responses with median levels below those observed in symptomatic patients. Regarding convalescent plasma applications, a protocol was standardized for the assessment of end point IgG antibody titers with COVIDAR with more than 500 plasma donors. The protocol showed a positive correlation with neutralizing antibody titers, and was used for clinical trials and therapies across the country. Using this protocol, about 80% of convalescent donor plasmas were potentially suitable for therapies. Here, we demonstrate the importance of providing a robust and specific serologic assay for generating new information about antibody kinetics in infected individuals and mitigation policies to cope with pandemic needs.


Asunto(s)
COVID-19/virología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Adulto , Anciano , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Formación de Anticuerpos , Argentina/epidemiología , COVID-19/epidemiología , Ensayo de Inmunoadsorción Enzimática/métodos , Femenino , Humanos , Inmunoglobulina G/inmunología , Inmunoglobulina M/inmunología , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Pandemias , SARS-CoV-2/aislamiento & purificación , Estudios Seroepidemiológicos
5.
Plant Cell Physiol ; 63(11): 1709-1719, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36066193

RESUMEN

Circadian rhythms enable organisms to anticipate and adjust their physiology to periodic environmental changes. These rhythms are controlled by biological clocks that consist of a set of clock genes that regulate each other's expression. Circadian oscillations in messenger RNA (mRNA) levels require the regulation of mRNA production and degradation. While transcription factors controlling clock function have been well characterized from cyanobacteria to humans, the role of factors controlling mRNA decay is largely unknown. Here, we show that mutations in SM-LIKE PROTEIN 1 (LSM1) and exoribonucleases 4 (XRN4), components of the 5'-3' mRNA decay pathway, alter clock function in Arabidopsis. We found that lsm1 and xrn4 mutants display long-period phenotypes for clock gene expression. In xrn4, these circadian defects were associated with changes in circadian phases of expression, but not overall mRNA levels, of several core-clock genes. We then used noninvasive transcriptome-wide mRNA stability analysis to identify genes and pathways regulated by XRN4. Among genes affected in the xrn4 mutant at the transcriptional and posttranscriptional level, we found an enrichment in genes involved in auxin, ethylene and drought recovery. Large effects were not observed for canonical core-clock genes, although the mRNAs of several auxiliary clock genes that control the pace of the clock were stabilized in xrn4 mutants. Our results establish that the 5'-3' mRNA decay pathway constitutes a novel posttranscriptional regulatory layer of the circadian gene network, which probably acts through a combination of small effects on mRNA stability of several auxiliary and some core-clock genes.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Relojes Circadianos , Humanos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regulación de la Expresión Génica de las Plantas , Relojes Circadianos/genética , Estabilidad del ARN/genética
6.
Nucleic Acids Res ; 48(11): 6280-6293, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32396196

RESUMEN

Although originally identified as the components of the complex aiding the cytosolic chaperonin CCT in the folding of actins and tubulins in the cytosol, prefoldins (PFDs) are emerging as novel regulators influencing gene expression in the nucleus. Work conducted mainly in yeast and animals showed that PFDs act as transcriptional regulators and participate in the nuclear proteostasis. To investigate new functions of PFDs, we performed a co-expression analysis in Arabidopsis thaliana. Results revealed co-expression between PFD and the Sm-like (LSM) genes, which encode the LSM2-8 spliceosome core complex, in this model organism. Here, we show that PFDs interact with and are required to maintain adequate levels of the LSM2-8 complex. Our data indicate that levels of the LSM8 protein, which defines and confers the functional specificity of the complex, are reduced in pfd mutants and in response to the Hsp90 inhibitor geldanamycin. We provide biochemical evidence showing that LSM8 is a client of Hsp90 and that PFD4 mediates the interaction between both proteins. Consistent with our results and with the role of the LSM2-8 complex in splicing through the stabilization of the U6 snRNA, pfd mutants showed reduced levels of this snRNA and altered pre-mRNA splicing patterns.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas de Unión al ARN/metabolismo , Empalmosomas/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Complejos Multiproteicos/química , Mutación , Unión Proteica , Empalme del ARN , Empalmosomas/química
7.
Plant J ; 103(2): 889-902, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32314836

RESUMEN

The circadian clock of Arabidopsis thaliana controls many physiological and molecular processes, allowing plants to anticipate daily changes in their environment. However, developing a detailed understanding of how oscillations in mRNA levels are connected to oscillations in co/post-transcriptional processes, such as splicing, has remained a challenge. Here we applied a combined approach using deep transcriptome sequencing and bioinformatics tools to identify novel circadian-regulated genes and splicing events. Using a stringent approach, we identified 300 intron retention, eight exon skipping, 79 alternative 3' splice site usage, 48 alternative 5' splice site usage, and 350 multiple (more than one event type) annotated events under circadian regulation. We also found seven and 721 novel alternative exonic and intronic events. Depletion of the circadian-regulated splicing factor AtSPF30 homologue resulted in the disruption of a subset of clock-controlled splicing events. Altogether, our global circadian RNA-seq coupled with an in silico, event-centred, splicing analysis tool offers a new approach for studying the interplay between the circadian clock and the splicing machinery at a global scale. The identification of many circadian-regulated splicing events broadens our current understanding of the level of control that the circadian clock has over this co/post-transcriptional regulatory layer.


Asunto(s)
Empalme Alternativo , Arabidopsis/metabolismo , Ritmo Circadiano , Perfilación de la Expresión Génica , Empalme Alternativo/fisiología , Arabidopsis/genética , Arabidopsis/fisiología , Ritmo Circadiano/fisiología , Genes de Plantas/genética , Transcriptoma
8.
New Phytol ; 231(5): 1890-1905, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33909310

RESUMEN

Shade and warmth promote the growth of the stem, but the degree of mechanistic convergence and functional association between these responses is not clear. We analysed the quantitative impact of mutations and natural genetic variation on the hypocotyl growth responses of Arabidopsis thaliana to shade and warmth, the relationship between the abundance of PHYTOCHROME INTERACTING FACTOR 4 (PIF4) and growth stimulation by shade or warmth, the effects of both cues on the transcriptome and the consequences of warm temperature on carbon balance. Growth responses to shade and warmth showed strong genetic linkage and similar dependence on PIF4 levels. Temperature increased growth and phototropism even within a range where damage by extreme high temperatures is unlikely to occur in nature. Both cues enhanced the expression of growth-related genes and reduced the expression of photosynthetic genes. However, only warmth enhanced the expression of genes involved in responses to heat. Warm temperatures substantially increased the amount of light required to compensate for the daily carbon dioxide balance. We propose that the main ecological function of hypocotyl growth responses to warmth is to increase the access of shaded photosynthetic organs to light, which implies functional convergence with shade avoidance.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Hipocótilo/metabolismo , Fototropismo
9.
Proc Natl Acad Sci U S A ; 115(21): 5612-5617, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29724856

RESUMEN

Light cues from neighboring vegetation rapidly initiate plant shade-avoidance responses. Despite our detailed knowledge of the early steps of this response, the molecular events under prolonged shade are largely unclear. Here we show that persistent neighbor cues reinforce growth responses in addition to promoting auxin-responsive gene expression in Arabidopsis and soybean. However, while the elevation of auxin levels is well established as an early event, in Arabidopsis, the response to prolonged shade occurs when auxin levels have declined to the prestimulation values. Remarkably, the sustained low activity of phytochrome B under prolonged shade led to (i) decreased levels of PHYTOCHROME INTERACTING FACTOR 4 (PIF4) in the cotyledons (the organs that supply auxin) along with increased levels in the vascular tissues of the stem, (ii) elevated expression of the PIF4 targets INDOLE-3-ACETIC ACID 19 (IAA19) and IAA29, which in turn reduced the expression of the growth-repressive IAA17 regulator, (iii) reduced abundance of AUXIN RESPONSE FACTOR 6, (iv) reduced expression of MIR393 and increased abundance of its targets, the auxin receptors, and (v) elevated auxin signaling as indicated by molecular markers. Mathematical and genetic analyses support the physiological role of this system-level rearrangement. We propose that prolonged shade rewires the connectivity between light and auxin signaling to sustain shade avoidance without enhanced auxin levels.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ácidos Indolacéticos/farmacología , Luz , Fitocromo/metabolismo , Fenómenos Fisiológicos de las Plantas , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Fitocromo/genética , Reguladores del Crecimiento de las Plantas/farmacología , Transducción de Señal
10.
Plant J ; 99(1): 7-22, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30924988

RESUMEN

Shade-intolerant plants respond to the decrease in the red (R) to far-red (FR) light ratio (R:FR) occurring under shade by elongating stems and petioles and by re-positioning leaves, in a race to outcompete neighbors for the sunlight resource. In some annual species, the shade avoidance syndrome (SAS) is accompanied by the early induction of flowering. Anticipated flowering is viewed as a strategy to set seeds before the resources become severely limiting. Little is known about the molecular mechanisms of SAS in perennial forage crops like alfalfa (Medicago sativa). To study SAS in alfalfa, we exposed alfalfa plants to simulated shade by supplementing with FR light. Low R:FR light produced a classical SAS, with increased internode and petiole lengths, but unexpectedly also with delayed flowering. To understand the molecular mechanisms involved in uncoupling SAS from early flowering, we used a transcriptomic approach. The SAS is likely to be mediated by increased expression of msPIF3 and msHB2 in low R:FR light. Constitutive expression of these genes in Arabidopsis led to SAS, including early flowering, strongly suggesting that their roles are conserved. Delayed flowering was likely to be mediated by the downregulation of msSPL3, which promotes flowering in both Arabidopsis and alfalfa. Shade-delayed flowering in alfalfa may be important to extend the vegetative phase under suboptimal light conditions, and thus assure the accumulation of reserves necessary to resume growth after the next season.


Asunto(s)
Flores/fisiología , Luz , Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Medicago sativa/metabolismo , Medicago sativa/fisiología
11.
Plant Biotechnol J ; 18(4): 944-954, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31536663

RESUMEN

Alfalfa (Medicago sativa L.) is one of the most important forage crops worldwide. As a perennial, alfalfa is cut several times each year. Farmers face a dilemma: if cut earlier, forage nutritive value is much higher but regrowth is affected and the longevity of the stand is severely compromised. On the other hand, if alfalfa is cut later at full flower, stands persist longer and more biomass may be harvested, but the nutritive value diminishes. Alfalfa is a strict long-day plant. We reasoned that by manipulating the response to photoperiod, we could delay flowering to improve forage quality and widen each harvesting window, facilitating management. With this aim, we functionally characterized the FLOWERING LOCUS T family of genes, represented by five members: MsFTa1, MsFTa2, MsFTb1, MsFTb2 and MsFTc. The expression of MsFTa1 correlated with photoperiodic flowering and its down-regulation led to severe delayed flowering. Altogether, with late flowering, low expression of MsFTa1 led to changes in plant architecture resulting in increased leaf to stem biomass ratios and forage digestibility. By manipulating photoperiodic flowering, we were able to improve the quality of alfalfa forage and management, which may allow farmers to cut alfalfa of high nutritive value without compromising stand persistence.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Medicago sativa/genética , Valor Nutritivo , Proteínas de Plantas/genética , Biomasa , Regulación hacia Abajo , Flores/fisiología , Medicago sativa/química , Fotoperiodo
12.
Proc Natl Acad Sci U S A ; 114(33): E7018-E7027, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28760995

RESUMEN

Light signals regulate plant growth and development by controlling a plethora of gene expression changes. Posttranscriptional regulation, especially pre-mRNA processing, is a key modulator of gene expression; however, the molecular mechanisms linking pre-mRNA processing and light signaling are not well understood. Here we report a protein related to the human splicing factor 45 (SPF45) named splicing factor for phytochrome signaling (SFPS), which directly interacts with the photoreceptor phytochrome B (phyB). In response to light, SFPS-RFP (red fluorescent protein) colocalizes with phyB-GFP in photobodies. sfps loss-of-function plants are hyposensitive to red, far-red, and blue light, and flower precociously. SFPS colocalizes with U2 small nuclear ribonucleoprotein-associated factors including U2AF65B, U2A', and U2AF35A in nuclear speckles, suggesting SFPS might be involved in the 3' splice site determination. SFPS regulates pre-mRNA splicing of a large number of genes, of which many are involved in regulating light signaling, photosynthesis, and the circadian clock under both dark and light conditions. In vivo RNA immunoprecipitation (RIP) assays revealed that SFPS associates with EARLY FLOWERING 3 (ELF3) mRNA, a critical link between light signaling and the circadian clock. Moreover, PHYTOCHROME INTERACTING FACTORS (PIFs) transcription factor genes act downstream of SFPS, as the quadruple pif mutant pifq suppresses defects of sfps mutants. Taken together, these data strongly suggest SFPS modulates light-regulated developmental processes by controlling pre-mRNA splicing of light signaling and circadian clock genes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fitocromo B/metabolismo , Desarrollo de la Planta/fisiología , Precursores del ARN/metabolismo , Factores de Empalme de ARN/metabolismo , Empalme del ARN/fisiología , ARN de Planta/metabolismo , Transducción de Señal/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fitocromo B/genética , Precursores del ARN/genética , Factores de Empalme de ARN/genética , ARN de Planta/genética
13.
PLoS Pathog ; 12(8): e1005841, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27575636

RESUMEN

Dengue virus NS5 protein plays multiple functions in the cytoplasm of infected cells, enabling viral RNA replication and counteracting host antiviral responses. Here, we demonstrate a novel function of NS5 in the nucleus where it interferes with cellular splicing. Using global proteomic analysis of infected cells together with functional studies, we found that NS5 binds spliceosome complexes and modulates endogenous splicing as well as minigene-derived alternative splicing patterns. In particular, we show that NS5 alone, or in the context of viral infection, interacts with core components of the U5 snRNP particle, CD2BP2 and DDX23, alters the inclusion/exclusion ratio of alternative splicing events, and changes mRNA isoform abundance of known antiviral factors. Interestingly, a genome wide transcriptome analysis, using recently developed bioinformatics tools, revealed an increase of intron retention upon dengue virus infection, and viral replication was improved by silencing specific U5 components. Different mechanistic studies indicate that binding of NS5 to the spliceosome reduces the efficiency of pre-mRNA processing, independently of NS5 enzymatic activities. We propose that NS5 binding to U5 snRNP proteins hijacks the splicing machinery resulting in a less restrictive environment for viral replication.


Asunto(s)
Dengue , Interacciones Huésped-Parásitos/genética , Empalme del ARN , Empalmosomas/virología , Proteínas no Estructurales Virales/metabolismo , Animales , Línea Celular , Virus del Dengue/patogenicidad , Virus del Dengue/fisiología , Técnica del Anticuerpo Fluorescente , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Reacción en Cadena de la Polimerasa , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Transfección
14.
Plant Cell Environ ; 41(10): 2328-2341, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29852518

RESUMEN

Environmental stresses are the major factors that limit productivity in plants. Here, we report on the function of an uncharacterized gene At1g07050, encoding a CCT domain-containing protein, from Arabidopsis thaliana. At1g07050 expression is highly repressed by oxidative stress. We used metabolomics, biochemical, and genomic approaches to analyse performance of transgenic lines with altered expression of At1g07050 under normal and oxidative stress conditions. At1g07050 overexpressing lines showed increased levels of reactive oxygen species (ROS), whereas knock-out mutants exhibited decreased levels of ROS and higher tolerance to oxidative stress generated in the chloroplast. Our results uncover a role for At1g07050 in cellular redox homeostasis controlling H2 O2 levels, due to changes in enzymes, metabolites, and transcripts related to ROS detoxification. Therefore, we call this gene FITNESS. Additionally, several genes such as ACD6, PCC1, and ICS1 related to salicylic acid signalling and defence were found differentially expressed among the lines. Notably, FITNESS absence significantly improved seed yield suggesting an effective fine-tuning trade-off between reproductive success and defence responses.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Péptidos y Proteínas de Señalización Intracelular/farmacología , Proteínas Nucleares/farmacología , Especies Reactivas de Oxígeno/metabolismo , Arabidopsis/genética , Arabidopsis/inmunología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/farmacología , Clorofila/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Perfilación de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Filogenia , Inmunidad de la Planta , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa , Prolina/metabolismo , Reproducción , Transducción de Señal
15.
Proc Natl Acad Sci U S A ; 112(16): 5249-53, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25848001

RESUMEN

Circadian clocks sustain 24-h rhythms in physiology and metabolism that are synchronized with the day/night cycle. In plants, the regulatory network responsible for the generation of rhythms has been broadly investigated over the past years. However, little is known about the intersecting pathways that link the environmental signals with rhythms in cellular metabolism. Here, we examine the role of the circadian components REVEILLE8/LHY-CCA1-LIKE5 (RVE8/LCL5) and NIGHT LIGHT-INDUCIBLE AND CLOCK-REGULATED genes (LNK) shaping the diurnal oscillation of the anthocyanin metabolic pathway. Around dawn, RVE8 up-regulates anthocyanin gene expression by directly associating to the promoters of a subset of anthocyanin biosynthetic genes. The up-regulation is overcome at midday by the repressing activity of LNK proteins, as inferred by the increased anthocyanin gene expression in lnk1/lnk2 double mutant plants. Chromatin immunoprecipitation assays using LNK and RVE8 misexpressing plants show that RVE8 binding to target promoters is precluded in LNK overexpressing plants and conversely, binding is enhanced in the absence of functional LNKs, which provides a mechanism by which LNKs antagonize RVE8 function in the regulation of anthocyanin accumulation. Based on their previously described transcriptional coactivating function, our study defines a switch in the regulatory activity of RVE8-LNK interaction, from a synergic coactivating role of evening-expressed clock genes to a repressive antagonistic function modulating anthocyanin biosynthesis around midday.


Asunto(s)
Antocianinas/biosíntesis , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Ritmo Circadiano , Factores de Transcripción/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Regiones Promotoras Genéticas , Unión Proteica/genética , Factores de Tiempo , Regulación hacia Arriba/genética
16.
Proc Natl Acad Sci U S A ; 112(30): 9382-7, 2015 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-26170331

RESUMEN

The mechanisms by which poikilothermic organisms ensure that biological processes are robust to temperature changes are largely unknown. Temperature compensation, the ability of circadian rhythms to maintain a relatively constant period over the broad range of temperatures resulting from seasonal fluctuations in environmental conditions, is a defining property of circadian networks. Temperature affects the alternative splicing (AS) of several clock genes in fungi, plants, and flies, but the splicing factors that modulate these effects to ensure clock accuracy throughout the year remain to be identified. Here we show that GEMIN2, a spliceosomal small nuclear ribonucleoprotein assembly factor conserved from yeast to humans, modulates low temperature effects on a large subset of pre-mRNA splicing events. In particular, GEMIN2 controls the AS of several clock genes and attenuates the effects of temperature on the circadian period in Arabidopsis thaliana. We conclude that GEMIN2 is a key component of a posttranscriptional regulatory mechanism that ensures the appropriate acclimation of plants to daily and seasonal changes in temperature conditions.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Proteínas del Complejo SMN/fisiología , Empalme Alternativo , Secuencia de Aminoácidos , Arabidopsis/fisiología , Proteínas de Arabidopsis/fisiología , Ritmo Circadiano , Análisis por Conglomerados , Evolución Molecular , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Prueba de Complementación Genética , Estudio de Asociación del Genoma Completo , Humanos , Intrones , Datos de Secuencia Molecular , Mutación , Proteínas del Tejido Nervioso/genética , Hojas de la Planta/fisiología , ARN Nuclear Pequeño/genética , Proteínas de Unión al ARN/genética , Proteínas del Complejo SMN/genética , Homología de Secuencia de Aminoácido , Empalmosomas/fisiología , Temperatura , Transcripción Genética
17.
Proc Natl Acad Sci U S A ; 111(42): 15166-71, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25288739

RESUMEN

Growing evidence suggests that core spliceosomal components differentially affect RNA processing of specific genes; however, whether changes in the levels or activities of these factors control specific signaling pathways is largely unknown. Here we show that some SM-like (LSM) genes, which encode core components of the spliceosomal U6 small nuclear ribonucleoprotein complex, regulate circadian rhythms in plants and mammals. We found that the circadian clock regulates the expression of LSM5 in Arabidopsis plants and several LSM genes in mouse suprachiasmatic nucleus. Further, mutations in LSM5 or LSM4 in Arabidopsis, or down-regulation of LSM3, LSM5, or LSM7 expression in human cells, lengthens the circadian period. Although we identified changes in the expression and alternative splicing of some core clock genes in Arabidopsis lsm5 mutants, the precise molecular mechanism causing period lengthening remains to be identified. Genome-wide expression analysis of either a weak lsm5 or a strong lsm4 mutant allele in Arabidopsis revealed larger effects on alternative splicing than on constitutive splicing. Remarkably, large splicing defects were not observed in most of the introns evaluated using RNA-seq in the strong lsm4 mutant allele used in this study. These findings support the idea that some LSM genes play both regulatory and constitutive roles in RNA processing, contributing to the fine-tuning of specific signaling pathways.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Ritmo Circadiano , Proteínas de Unión al ARN/fisiología , Ribonucleoproteínas Nucleares Pequeñas/fisiología , Alelos , Empalme Alternativo , Animales , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Línea Celular Tumoral , Regulación de la Expresión Génica de las Plantas , Genómica , Humanos , Ratones , Ratones Transgénicos , Mutación , Fenotipo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN/genética , Ribonucleoproteínas Nucleares Pequeñas/genética , Análisis de Secuencia de ARN , Transducción de Señal , Empalmosomas/metabolismo , Núcleo Supraquiasmático/metabolismo
18.
Plant J ; 83(6): 952-61, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26212862

RESUMEN

Long days repeatedly enhance the expression of the FLOWERING LOCUS T (FT) gene during the evening and early night. This signal induces flowering despite low FT expression the rest of the day. To investigate whether this temporal behaviour transmits information, plants of Arabidopsis thaliana were exposed to different day-night cycles, including combinations that induced FT expression out of normal hours. Flowering time best correlated with the integral of FT expression over several days, corrected for a higher evening and early night sensitivity to FT. We generated a system to induce FT expression in a leaf removed 8-12 h later. The expression of flowering genes in the apex and flowering required cycles of induction repeated over several days. Evening and early night FT induction was the most effective. The temporal pattern of FT expression encodes information that discriminates long days from other inputs.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Arabidopsis/metabolismo , Ritmo Circadiano/genética , Flores/genética , Meristema/genética , Fotoperiodo , Plantas Modificadas Genéticamente
19.
Plant Cell ; 25(8): 2892-906, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23933882

RESUMEN

Moderately warm constant ambient temperatures tend to oppose light signals in the control of plant architecture. By contrast, here we show that brief heat shocks enhance the inhibition of hypocotyl growth induced by light perceived by phytochrome B in deetiolating Arabidopsis thaliana seedlings. In darkness, daily heat shocks transiently increased the expression of pseudo-response regulator7 (PRR7) and PRR9 and markedly enhanced the amplitude of the rhythms of late elongated hypocotyl (LHY) and circadian clock associated1 (CCA1) expression. In turn, these rhythms gated the hypocotyl response to red light, in part by changing the expression of phytochrome interacting FACTOR4 (PIF4) and PIF5. After light exposure, heat shocks also reduced the nuclear abundance of constitutive photomorphogenic1 (COP1) and increased the abundance of its target elongated hypocotyl5 (HY5). The synergism between light and heat shocks was deficient in the prr7 prr9, lhy cca1, pif4 pif5, cop1, and hy5 mutants. The evening element (binding site of LHY and CCA1) and G-box promoter motifs (binding site of PIFs and HY5) were overrepresented among genes with expression controlled by both heat shock and red light. The heat shocks experienced by buried seedlings approaching the surface of the soil prepare the seedlings for the impending exposure to light by rhythmically lowering LHY, CCA1, PIF4, and PIF5 expression and by enhancing HY5 stability.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Relojes Circadianos/efectos de la radiación , Etiolado/efectos de la radiación , Respuesta al Choque Térmico/efectos de la radiación , Luz , Fitocromo B/metabolismo , Transducción de Señal/efectos de la radiación , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Núcleo Celular/metabolismo , Núcleo Celular/efectos de la radiación , Relojes Circadianos/genética , Oscuridad , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Calor , Hipocótilo/crecimiento & desarrollo , Hipocótilo/efectos de la radiación , Modelos Biológicos , Estabilidad Proteica/efectos de la radiación , Plantones/genética , Plantones/efectos de la radiación , Transducción de Señal/genética , Transcriptoma/genética , Transcriptoma/efectos de la radiación
20.
Nature ; 468(7320): 112-6, 2010 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-20962777

RESUMEN

Circadian rhythms allow organisms to time biological processes to the most appropriate phases of the day-night cycle. Post-transcriptional regulation is emerging as an important component of circadian networks, but the molecular mechanisms linking the circadian clock to the control of RNA processing are largely unknown. Here we show that PROTEIN ARGININE METHYL TRANSFERASE 5 (PRMT5), which transfers methyl groups to arginine residues present in histones and Sm spliceosomal proteins, links the circadian clock to the control of alternative splicing in plants. Mutations in PRMT5 impair several circadian rhythms in Arabidopsis thaliana and this phenotype is caused, at least in part, by a strong alteration in alternative splicing of the core-clock gene PSEUDO RESPONSE REGULATOR 9 (PRR9). Furthermore, genome-wide studies show that PRMT5 contributes to the regulation of many pre-messenger-RNA splicing events, probably by modulating 5'-splice-site recognition. PRMT5 expression shows daily and circadian oscillations, and this contributes to the mediation of the circadian regulation of expression and alternative splicing of a subset of genes. Circadian rhythms in locomotor activity are also disrupted in dart5-1, a mutant affected in the Drosophila melanogaster PRMT5 homologue, and this is associated with alterations in splicing of the core-clock gene period and several clock-associated genes. Our results demonstrate a key role for PRMT5 in the regulation of alternative splicing and indicate that the interplay between the circadian clock and the regulation of alternative splicing by PRMT5 constitutes a common mechanism that helps organisms to synchronize physiological processes with daily changes in environmental conditions.


Asunto(s)
Empalme Alternativo/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Proteína Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Animales , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Secuencia de Bases , Relojes Circadianos/genética , Ritmo Circadiano/genética , Oscuridad , Proteínas de Drosophila/genética , Drosophila melanogaster/enzimología , Drosophila melanogaster/genética , Drosophila melanogaster/efectos de la radiación , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Luz , Metilación , Mutación , Proteínas Circadianas Period/genética , Fenotipo , Proteína Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/genética , Precursores del ARN/genética , Precursores del ARN/metabolismo , Sitios de Empalme de ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Empalmosomas/metabolismo , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA