Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
World J Microbiol Biotechnol ; 39(7): 172, 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37115432

RESUMEN

Marine sediments are one of the largest habitats on Earth, and their unique ecology, such as high salinity, high pressure, and hypoxia, may activate certain silent genes in marine microbes, resulting in microbes, enzymes, active products, and specific metabolic pathways that can adapt to these specific ecological environments. Marine sediment-derived microorganisms and their bioactive metabolites are of great significance and have potential commercial development prospects for food, pharmaceutical, chemical industries, agriculture, environmental protection and human nutrition and health. In recent years, although there have been numerous scientific reports surrounding marine sediment-derived microorganisms and their bioactive metabolites, a comprehensive review of their research progress is lacking. This paper presents the development and renewal of traditional culture-dependent and omics analysis techniques and their application to the screening of marine sediment-derived microorganisms producing bioactive substances. It also highlights recent research advances in the last five years surrounding the types, functional properties and potential applications of bioactive metabolites produced by marine sediment-derived microorganisms. These bioactive metabolites mainly include antibiotics, enzymes, enzyme inhibitors, sugars, proteins, peptides, and some other small molecule metabolites. In addition, the review ends with concluding remarks on the challenges and future directions for marine sediment-derived microorganisms and their bioactive metabolites. The review report not only helps to deepen the understanding of marine sediment-derived microorganisms and their bioactive metabolites, but also provides some useful information for the exploitation and utilization of marine microbial resources and the mining of new compounds with potential functional properties.


Asunto(s)
Antineoplásicos , Sedimentos Geológicos , Humanos , Factores Biológicos , Ecosistema , Antineoplásicos/farmacología , Ecología
2.
Bioresour Bioprocess ; 10(1): 82, 2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-38647906

RESUMEN

Different microorganisms can produce different proteases, which can adapt to different industrial requirements such as pH, temperature, and pressure. Salt-tolerant proteases (STPs) from microorganisms exhibit higher salt tolerance, wider adaptability, and more efficient catalytic ability under extreme conditions compared to conventional proteases. These unique enzymes hold great promise for applications in various industries including food, medicine, environmental protection, agriculture, detergents, dyes, and others. Scientific studies on microbial-derived STPs have been widely reported, but there has been little systematic review of microbial-derived STPs and their application in high-salt conventional soybean fermentable foods. This review presents the STP-producing microbial species and their selection methods, and summarizes and analyzes the salt tolerance mechanisms of the microorganisms. It also outlines various techniques for the isolation and purification of STPs from microorganisms and discusses the salt tolerance mechanisms of STPs. Furthermore, this review demonstrates the contribution of modern biotechnology in the screening of novel microbial-derived STPs and their improvement in salt tolerance. It highlights the potential applications and commercial value of salt-tolerant microorganisms and STPs in high-salt traditional soy fermented foods. The review ends with concluding remarks on the challenges and future directions for microbial-derived STPs. This review provides valuable insights into the separation, purification, performance enhancement, and application of microbial-derived STPs in traditional fermented foods.

3.
Animals (Basel) ; 12(19)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36230279

RESUMEN

Specific pathogen-free (SPF) grade laboratory animals are kept in specific cages for life. The limited space could affect the characterization of colonization and dynamic changes related to gut microorganisms, and affect adipokines, even further affecting the fat synthesis and muscle quality of animals. The objective of this study was to analyze the stocking density on the dynamic distribution of gut microbiota, fat synthesis and muscle quality of SPF grade Kunming mice. Three housing densities were accomplished by raising different mice per cage with the same floor size. Kunming mice were reared at low stocking density (LSD, three mice a group), medium stocking density (MSD, 5 mice a group), and high stocking density (HSD, 10 mice a group) for 12 weeks. The results demonstrated that the stocking density affected intestinal microbial flora composition. We found that compared with the MSD group, the abundance of Lactobacillus in the LSD group and the HSD group decreased, but the abundance of unclassified_Porphyromonadaceae increased. Moreover, fat synthesis and muscle quality were linked to the intestinal microbial flora and stocking density. Compared with the LSD group and the HSD group, the MSD group had a more balanced gut flora, higher fat synthesis and higher muscle quality. Overall, this study demonstrated that stocking density could affect gut microbiota composition, and reasonable stocking density could improve fat synthesis and muscle quality. Our study will provide theoretical support for the suitable stocking density of laboratory animals.

4.
Front Microbiol ; 12: 664850, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35496819

RESUMEN

Fermentation is an ancient food preservation and processing technology with a long history of thousands of years, that is still practiced all over the world. Fermented foods are usually defined as foods or beverages made by controlling the growth of microorganisms and the transformation of raw and auxiliary food components, which provide the human body with many beneficial nutrients or health factors. As fungus widely used in traditional Chinese fermented foods, molds and yeasts play an irreplaceable role in the formation of flavor substances and the production of functional components in fermented foods. The research progress of molds and yeasts in traditional Chinese fermented foods from traditional to modern is reviewed, including the research on the diversity, and population structure of molds and yeasts in fermented foods. The interaction between fermenting mold and yeast and the latest research results and application development prospects of related industries were discussed.

5.
Cancer Biother Radiopharm ; 36(5): 433-440, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32343601

RESUMEN

Background: The incidence of thyroid cancer has increased dramatically in recent decades due, in large part, to identifications of subclinical diseases. Literature on thyroid cancer has examined the pathogenesis of high invasive papillary thyroid cancer (PTC) and has improved the prevention and treatment of PTC. This study aims to investigate the effects of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) on PTC migration and invasion, and clarify the regulatory mechanisms between miR-146b-5p and MALAT1. Materials and Methods: In this study, we examined the differential expression of MALAT1, miR-146b-5p, and DNA methyltransferases 3A (DNMT3A) in PTC tissues. The effect of MALAT1 on the proliferation and invasion ability of PTC cells was verified by constructing a sh-MALAT1 knockdown cell model. Correlations between MALAT1, miR-146b-5p, and DNMT3A were analyzed by the Pearson correlation method. Finally, we verified the regulatory relationship between miR-146b-5p and MALAT1 by the luciferase assay and rescue assay. Results: The expression of MALAT1 was upregulated in PTC tissues and cells, while a MALAT1 knockdown counteracted cellular activity, migration, and invasion of B-CPAP and K1 cells. The relationship between miR-146b-5p and DNMT3A was negative, while the relationship between miR-146b-5p and MALAT1 was positive. Both genes were separately detected using the Pearson correlation method. The luciferase assay and rescue assay demonstrated that a binding site in miR-146b-5p was existent in the 3' untranslated region of DNMT3A, while a knockdown of DNMT3A partially rescued si-miR-146b-5p induced proliferation, migration, and invasion effects on PTC cells. Conclusions: The MALAT1 gene is highly expressed in PTC, while the knockdown MALAT1 gene attenuates the cellular activity and invasive ability of PTC cells. The microRNA miR-146b-5p can promote a MALAT1 expression by negatively regulating DNMT3A in PTC.


Asunto(s)
MicroARNs/genética , ARN Largo no Codificante/genética , Cáncer Papilar Tiroideo/genética , Cáncer Papilar Tiroideo/patología , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Metiltransferasa 3A , Expresión Génica , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Invasividad Neoplásica/genética , Regulación hacia Arriba
6.
3 Biotech ; 9(4): 128, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30863707

RESUMEN

There are two steps (alcoholic fermentation and acetic acid fermentation) in the production of fruit vinegar by liquid fermentation. The yeast alcoholic fermentation step plays an important role in the quality of apple vinegar. In this work, Candida tropicalis and aromatizing yeast were used in mixed alcoholic fermentation to improve the flavor of the apple vinegar. The total organic acid contents of apple cider and vinegar in mixed cultures were all higher than those in pure culture (Candida tropicalis). Umami and sweet free amino acid levels in mixed-culture apple vinegar (MCAV; 1236.71 and 858.25 mg/L, respectively) were significantly higher than those in pure-culture apple vinegar (PCAV; 1214.69 and 820.37 mg/L, respectively). The total esters, total alcohols, and total phenolics were also significantly increased in MCAV (282.36 g/L, 254.22 g/L and 47.49 g/L, respectively), fruit flavor and floral aromas in MCAV were higher than that in PCAV. In the principal component analysis (PCA), the integrative score for MCAV was higher than that for PCAV. Therefore, mixed cultures of Candida tropicalis and aromatizing yeast in alcoholic fermentation can effectively improve the flavor and quality of apple cider vinegar; more details about the mixed culture need to be investigated in the future.

7.
Appl Biochem Biotechnol ; 186(1): 217-232, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29552715

RESUMEN

The acetic acid bacterium Acetobacter pasteurianus plays an important role in acetic acid fermentation, which involves oxidation of ethanol to acetic acid through the ethanol respiratory chain under specific conditions. In order to obtain more suitable bacteria for the acetic acid industry, A. pasteurianus JST-S screened in this laboratory was compared with A. pasteurianus CICC 20001, a current industrial strain in China, to determine optimal fermentation parameters under different environmental stresses. The maximum total acid content of A. pasteurianus JST-S was 57.14 ± 1.09 g/L, whereas that of A. pasteurianus CICC 20001 reached 48.24 ± 1.15 g/L in a 15-L stir stank. Metabolic flux analysis was also performed to compare the reaction byproducts. Our findings revealed the potential value of the strain in improvement of industrial vinegar fermentation.


Asunto(s)
Ácido Acético/metabolismo , Acetobacter/metabolismo , Fermentación , Acetobacter/enzimología , Acetobacter/crecimiento & desarrollo , Alcohol Deshidrogenasa/metabolismo , Aldehído Deshidrogenasa/metabolismo , China , Transporte de Electrón , Etanol/metabolismo , Glucosa/metabolismo , Especificidad de la Especie , Estrés Fisiológico
8.
3 Biotech ; 7(5): 308, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28955605

RESUMEN

Acetobacter pasteurianus JST-S was screened from solid fermented grains of vinegar in China, identified by molecular analysis, and used for the production of purple sweet potato vinegar using purple sweet potato as the substrate. By orthogonal experiment, maximum total acid concentration (4.26% [v/v]) was achieved under optimized conditions as follows: fermentation time, 3.5 days; ethanol content, 9% v/v; and inoculum size, 8% v/v. During the production of purple potato vinegar, the anthocyanin concentration decreased from 652.07 to 301.73 µg/mL. The antioxidant activity of products, including diphenyl-picryl hydrazide radical-scavenging capacity (above 60%), reducing power (above 0.47), and hydroxyl radical-scavenging capacity (above 46%), showed positive linear regression (P < 0.01), which could be related with the changes in anthocyanin concentration and antioxidant activities at different stages of vinegar fermentation. The acetic acid and other non-phenolic antioxidants in purple sweet potato vinegar may have contributed to the antioxidant activities. Results of these studies may provide a reference for the industrial production of vinegar by liquid fermentation of purple sweet potato.

9.
Front Microbiol ; 8: 1713, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28932219

RESUMEN

Pyrroquinoline quinone-dependent alcohol dehydrogenase (PQQ-ADH) is a key enzyme in the ethanol oxidase respiratory chain of acetic acid bacteria (AAB). To investigate the effect of PQQ-ADH on acetic acid production by Acetobacter pasteurianus JST-S, subunits I (adhA) and II (adhB) of PQQ-ADH were over-expressed, the fermentation parameters and the metabolic flux analysis were compared in the engineered strain and the original one. The acetic acid production was improved by the engineered strain (61.42 g L-1) while the residual ethanol content (4.18 g L-1) was decreased. Analysis of 2D maps indicated that 19 proteins were differently expressed between the two strains; of these, 17 were identified and analyzed by mass spectrometry and two-dimensional gel electrophoresis. With further investigation of metabolic flux analysis (MFA) of the pathway from ethanol and glucose, the results reveal that over-expression of PQQ-ADH is an effective way to improve the ethanol oxidation respiratory chain pathway and these can offer theoretical references for potential mechanism of metabolic regulation in AAB and researches with its acetic acid resistance.

10.
Int J Environ Res Public Health ; 11(4): 3493-506, 2014 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-24675642

RESUMEN

This study investigated injury patterns and the use of computed tomography (CT) among Chinese children with mild traumatic brain injury (MTBI). We enrolled children with MTBI who were treated within 24 hours of head trauma in the emergency department of Wuhan Medical Care Center for Women and Children in Wuhan, China. Characteristics of MTBIs were analyzed by age and gender. Results of cranial CT scan and clinically-important brain injury (ciTBI) for children were obtained. The definition of ciTBI was: death from TBI, intubation for more than 24 h for TBI, neurosurgery, or hospital admission of 2 nights or more. Of 455 eligible patients with MTBI, ciTBI occurred in two, and no one underwent neurosurgical intervention. CT scans were performed for 441 TBI patients (96.9%), and abnormal findings were reported for 147 patients (33.3%, 95% CI 29.0-37.8). Falls were the leading cause of MTBI (61.5%), followed by blows (18.9%) and traffic collisions (14.1%) for children in the 0-2 group and 10-14 group. For children aged between 3 and 9, the top three causes of TBI were falls, traffic collisions and blows. Leisure activity was the most reported activity when injuries occurred for all age groups. Sleeping/resting and walking ranked in the second and third place for children between 0 and 2 years of age, and walking and riding for the other two groups. The places where the majority injuries occurred were the home for the 0-2 and 3-9 years of age groups, and school for the 10-14 years of age group. There was no statistical difference between boys and girls with regard to the activity that caused the MTBI. This study highlights the important roles that parents and school administrators in the development of preventive measures to reduce the risk of traumatic brain injury in children. Also, identifying children who had a head trauma at very low risk of clinically important TBI for whom CT might be unnecessary is a priority area of research in China.


Asunto(s)
Lesiones Encefálicas/diagnóstico por imagen , Lesiones Encefálicas/epidemiología , Accidentes , Adolescente , Niño , Preescolar , China/epidemiología , Femenino , Hospitales Pediátricos/estadística & datos numéricos , Humanos , Lactante , Recién Nacido , Actividades Recreativas , Masculino , Estudios Prospectivos , Factores de Riesgo , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA