Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Am J Physiol Renal Physiol ; 326(2): F167-F177, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37969103

RESUMEN

This study aimed to investigate the role of bone marrow stromal cell antigen-1 (Bst1; also known as CD157) in acute kidney injury (AKI). Bst1 is a cell surface molecule with various enzymatic activities and downstream intracellular signaling pathways that modulate the immune response. Previous research has linked Bst1 to diseases such as ovarian cancer, Parkinson's disease, and rheumatoid arthritis. We used bilateral ischemia-reperfusion injury (IRI) as an AKI model and created bone marrow chimeric mice to evaluate the role of Bst1 in bone marrow-derived cells. We also used flow cytometry to identify Bst1/CD157 expression in hematopoietic cells and evaluate immune cell dynamics in the kidney. The findings showed that Bst1-deficient (Bst1-/-) mice were protected against renal bilateral IRI. Bone marrow chimera experiments revealed that Bst1 expression on hematopoietic cells, but not parenchymal cells, induced renal IRI. Bst1 was mainly found in B cells and neutrophils by flow cytometry of the spleen and bone marrow. In vitro, migration of neutrophils from Bst1-/- mice was suppressed, and adoptive transfer of neutrophils from wild-type Bst1+/+ mice abolished the renal protective effect in Bst1 knockout mice. In conclusion, the study demonstrated that Bst1-/- mice are protected against renal IRI and that Bst1 expression in neutrophils plays a crucial role in inducing renal IRI. These findings suggest that targeting Bst1 in neutrophils could be a potential therapeutic strategy for AKI.NEW & NOTEWORTHY Acute kidney injury (AKI), a serious disease for which there is no effective Federal Drug Administration-approved treatment, is associated with high mortality rates. Bone marrow stromal cell antigen-1 (Bst1) is a cell surface molecule that can cause kidney fibrosis, but its role in AKI is largely unknown. Our study showed that Bst1-/- mice revealed a protective effect against renal bilateral ischemia-reperfusion injury (IRI). Adoptive transfer studies confirmed that Bst1 expression in hematopoietic cells, especially neutrophils, contributed to renal bilateral IRI.


Asunto(s)
Lesión Renal Aguda , Células Madre Mesenquimatosas , Daño por Reperfusión , Ratones , Animales , Lesión Renal Aguda/genética , Lesión Renal Aguda/prevención & control , Riñón/metabolismo , Daño por Reperfusión/genética , Daño por Reperfusión/prevención & control , Neutrófilos/metabolismo , Ratones Noqueados , Células Madre Mesenquimatosas/metabolismo , Ratones Endogámicos C57BL
2.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33737395

RESUMEN

Acute kidney injury is highly prevalent and associated with high morbidity and mortality, and there are no approved drugs for its prevention and treatment. Vagus nerve stimulation (VNS) alleviates inflammatory diseases including kidney disease; however, neural circuits involved in VNS-induced tissue protection remain poorly understood. The vagus nerve, a heterogeneous group of neural fibers, innervates numerous organs. VNS broadly stimulates these fibers without specificity. We used optogenetics to selectively stimulate vagus efferent or afferent fibers. Anterograde efferent fiber stimulation or anterograde (centripetal) sensory afferent fiber stimulation both conferred kidney protection from ischemia-reperfusion injury. We identified the C1 neurons-sympathetic nervous system-splenic nerve-spleen-kidney axis as the downstream pathway of vagus afferent fiber stimulation. Our study provides a map of the neural circuits important for kidney protection induced by VNS, which is critical for the safe and effective clinical application of VNS for protection from acute kidney injury.


Asunto(s)
Lesión Renal Aguda/etiología , Susceptibilidad a Enfermedades , Neuroinmunomodulación , Bazo/inmunología , Bazo/inervación , Estimulación del Nervio Vago , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Animales , Ratones , Neuronas , Sistema Nervioso Simpático/fisiología
3.
Kidney Int ; 100(3): 613-620, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34224760

RESUMEN

Microcirculatory changes and oxidative stress have long been associated with acute kidney injury. Despite substantial progress made by two-photon microscopy of microvascular responses to acute kidney injury in rodent models, little is known about the underlying changes in blood oxygen delivery and tissue oxygen metabolism. To fill this gap, we developed a label-free kidney imaging technique based on photoacoustic microscopy, which enables simultaneous quantification of hemoglobin concentration, oxygen saturation of hemoglobin, and blood flow in peritubular capillaries in vivo. Based on these microvascular parameters, microregional oxygen metabolism was quantified. We demonstrated the utility of this technique by studying kidney hemodynamic and oxygen-metabolic responses to acute kidney injury in mice subject to lipopolysaccharide-induced sepsis. Dynamic photoacoustic microscopy of the peritubular capillary function and tissue oxygen metabolism revealed that sepsis induced an acute and significant reduction in peritubular capillary oxygen saturation of hemoglobin, concomitant with a marked reduction in kidney ATP levels and contrasted with nominal changes in peritubular capillary flow and plasma creatinine. Thus, our technique opens new opportunities to study microvascular and metabolic dysfunction in acute and chronic kidney diseases.


Asunto(s)
Capilares , Microscopía , Animales , Riñón , Ratones , Microcirculación , Oxígeno
4.
Am J Physiol Renal Physiol ; 317(3): F658-F669, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31364375

RESUMEN

Progressive tubulointerstitial fibrosis may occur after acute kidney injury due to persistent inflammation. Purinergic signaling by 5'-ectonucleotidase, CD73, an enzyme that converts AMP to adenosine on the extracellular surface, can suppress inflammation. The role of CD73 in progressive kidney fibrosis has not been elucidated. We evaluated the effect of deletion of CD73 from kidney perivascular cells (including pericytes and/or fibroblasts of the Foxd1+ lineage) on fibrosis. Perivascular cell expression of CD73 was necessary to suppress inflammation and prevent kidney fibrosis in Foxd1CreCD73fl/fl mice evaluated 14 days after unilateral ischemia-reperfusion injury or folic acid treatment (250 mg/kg). Kidneys of Foxd1CreCD73fl/fl mice had greater collagen deposition, expression of proinflammatory markers (including various macrophage markers), and platelet-derived growth factor recepetor-ß immunoreactivity than CD73fl/fl mice. Kidney dysfunction and fibrosis were rescued by administration of soluble CD73 or by macrophage deletion. Isolated CD73-/- kidney pericytes displayed an activated phenotype (increased proliferation and α-smooth muscle actin mRNA expression) compared with wild-type controls. In conclusion, CD73 in perivascular cells may act to suppress myofibroblast transformation and influence macrophages to promote a wound healing response. These results suggest that the purinergic signaling pathway in the kidney interstitial microenvironment orchestrates perivascular cells and macrophages to suppress inflammation and prevent progressive fibrosis.


Asunto(s)
5'-Nucleotidasa/metabolismo , Microambiente Celular , Fibroblastos/metabolismo , Riñón/metabolismo , Macrófagos/metabolismo , Nefritis Intersticial/metabolismo , Pericitos/metabolismo , Daño por Reperfusión/metabolismo , 5'-Nucleotidasa/deficiencia , 5'-Nucleotidasa/genética , Actinas/metabolismo , Animales , Proliferación Celular , Células Cultivadas , Colágeno/metabolismo , Modelos Animales de Enfermedad , Fibroblastos/patología , Fibrosis , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Proteínas Ligadas a GPI/deficiencia , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Mediadores de Inflamación/metabolismo , Riñón/inmunología , Riñón/patología , Macrófagos/patología , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Nefritis Intersticial/genética , Nefritis Intersticial/inmunología , Nefritis Intersticial/patología , Pericitos/patología , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Daño por Reperfusión/genética , Daño por Reperfusión/inmunología , Daño por Reperfusión/patología , Transducción de Señal , Cicatrización de Heridas
5.
Kidney Int ; 95(3): 563-576, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30670317

RESUMEN

The cholinergic anti-inflammatory pathway (CAP) links the nervous and immune systems and modulates innate and adaptive immunity. Activation of the CAP by vagus nerve stimulation exerts protective effects in a wide variety of clinical disorders including rheumatoid arthritis and Crohn's disease, and in murine models of acute kidney injury including ischemia/reperfusion injury (IRI). The canonical CAP pathway involves activation of splenic alpha7-nicotinic acetylcholine receptor (α7nAChR)-positive macrophages by splenic ß2-adrenergic receptor-positive CD4+ T cells. Here we demonstrate that ultrasound or vagus nerve stimulation also activated α7nAChR-positive peritoneal macrophages, and that adoptive transfer of these activated peritoneal macrophages reduced IRI in recipient mice. The protective effect required α7nAChR, and did not occur in splenectomized mice or in mice lacking T and B cells, suggesting a bidirectional interaction between α7nAChR-positive peritoneal macrophages and other immune cells including ß2-adrenergic receptor-positive CD4+ T cells. We also found that expression of hairy and enhancer of split-1 (Hes1), a basic helix-loop-helix DNA-binding protein, is induced in peritoneal macrophages by ultrasound or vagus nerve stimulation. Adoptive transfer of Hes1-overexpressing peritoneal macrophages reduced kidney IRI. Our data suggest that Hes1 is downstream of α7nAChR and is important to fully activate the CAP. Taken together, these results suggest that peritoneal macrophages play a previously unrecognized role in mediating the protective effect of CAP activation in kidney injury, and that Hes1 is a new candidate pharmacological target to activate the CAP.


Asunto(s)
Lesión Renal Aguda/inmunología , Macrófagos Peritoneales/inmunología , Daño por Reperfusión/inmunología , Factor de Transcripción HES-1/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Lesión Renal Aguda/patología , Lesión Renal Aguda/terapia , Traslado Adoptivo , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/efectos de la radiación , Linfocitos T CD4-Positivos/trasplante , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Humanos , Activación de Macrófagos , Macrófagos Peritoneales/metabolismo , Macrófagos Peritoneales/trasplante , Masculino , Ratones , Neuroinmunomodulación/efectos de la radiación , Células RAW 264.7 , Daño por Reperfusión/patología , Daño por Reperfusión/terapia , Factor de Transcripción HES-1/genética , Factor de Transcripción HES-1/inmunología , Terapia por Ultrasonido , Regulación hacia Arriba/efectos de la radiación , Estimulación del Nervio Vago , Receptor Nicotínico de Acetilcolina alfa 7/inmunología
6.
J Am Soc Nephrol ; 29(7): 1887-1899, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29866797

RESUMEN

Background Pannexin1 (Panx1), an ATP release channel, is present in most mammalian tissues, but the role of Panx1 in health and disease is not fully understood. Panx1 may serve to modulate AKI; ATP is a precursor to adenosine and may function to block inflammation, or ATP may act as a danger-associated molecular pattern and initiate inflammation.Methods We used pharmacologic and genetic approaches to evaluate the effect of Panx1 on kidney ischemia-reperfusion injury (IRI), a mouse model of AKI.Results Pharmacologic inhibition of gap junctions, including Panx1, by administration of carbenoxolone protected mice from IRI. Furthermore, global deletion of Panx1 preserved kidney function and morphology and diminished the expression of proinflammatory molecules after IRI. Analysis of bone marrow chimeric mice revealed that Panx1 expressed on parenchymal cells is necessary for ischemic injury, and both proximal tubule and vascular endothelial Panx1 tissue-specific knockout mice were protected from IRI. In vitro, Panx1-deficient proximal tubule cells released less and retained more ATP under hypoxic stress.Conclusions Panx1 is involved in regulating ATP release from hypoxic cells, and reducing this ATP release may protect kidneys from AKI.


Asunto(s)
Lesión Renal Aguda/metabolismo , Conexinas/antagonistas & inhibidores , Conexinas/genética , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Daño por Reperfusión/genética , Daño por Reperfusión/metabolismo , Lesión Renal Aguda/etiología , Lesión Renal Aguda/prevención & control , Adenosina Trifosfato/metabolismo , Animales , Antiulcerosos/farmacología , Células de la Médula Ósea/metabolismo , Carbenoxolona/farmacología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Endotelio Vascular , Células Epiteliales/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Masculino , Ratones , Ratones Noqueados , ARN Mensajero/metabolismo , Daño por Reperfusión/patología , Daño por Reperfusión/prevención & control
7.
Front Med (Lausanne) ; 9: 993698, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36267620

RESUMEN

Chronic kidney disease is a progressive disease that may lead to end-stage renal disease. Interstitial fibrosis develops as the disease progresses. Therapies that focus on fibrosis to delay or reverse progressive renal failure are limited. We and others showed that sphingosine kinase 2-deficient mice (Sphk2 -/-) develop less fibrosis in mouse models of kidney fibrosis. Sphingosine kinase2 (SphK2), one of two sphingosine kinases that produce sphingosine 1-phosphate (S1P), is primarily located in the nucleus. S1P produced by SphK2 inhibits histone deacetylase (HDAC) and changes histone acetylation status, which can lead to altered target gene expression. We hypothesized that Sphk2 epigenetically regulates downstream genes to induce fibrosis, and we performed a comprehensive analysis using the combination of RNA-seq and ChIP-seq. Bst1/CD157 was identified as a gene that is regulated by SphK2 through a change in histone acetylation level, and Bst1 -/- mice were found to develop less renal fibrosis after unilateral ischemia-reperfusion injury, a mouse model of kidney fibrosis. Although Bst1 is a cell-surface molecule that has a wide variety of functions through its varied enzymatic activities and downstream intracellular signaling pathways, no studies on the role of Bst1 in kidney diseases have been reported previously. In the current study, we demonstrated that Bst1 is a gene that is regulated by SphK2 through epigenetic change and is critical in kidney fibrosis.

8.
Sci Transl Med ; 14(658): eabj2681, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35976996

RESUMEN

Chronic kidney disease (CKD), characterized by sustained inflammation and progressive fibrosis, is highly prevalent and can eventually progress to end-stage kidney disease. However, current treatments to slow CKD progression are limited. Sphingosine 1-phosphate (S1P), a product of sphingolipid catabolism, is a pleiotropic mediator involved in many cellular functions, and drugs targeting S1P signaling have previously been studied particularly for autoimmune diseases. The primary mechanism of most of these drugs is functional antagonism of S1P receptor-1 (S1P1) expressed on lymphocytes and the resultant immunosuppressive effect. Here, we documented the role of local S1P signaling in perivascular cells in the progression of kidney fibrosis using primary kidney perivascular cells and several conditional mouse models. S1P was predominantly produced by sphingosine kinase 2 in kidney perivascular cells and exported via spinster homolog 2 (Spns2). It bound to S1P1 expressed in perivascular cells to enhance production of proinflammatory cytokines/chemokines upon injury, leading to immune cell infiltration and subsequent fibrosis. A small-molecule Spns2 inhibitor blocked S1P transport, resulting in suppression of inflammatory signaling in human and mouse kidney perivascular cells in vitro and amelioration of kidney fibrosis in mice. Our study provides insight into the regulation of inflammation and fibrosis by S1P and demonstrates the potential of Spns2 inhibition as a treatment for CKD and potentially other inflammatory and fibrotic diseases that avoids the adverse events associated with systemic modulation of S1P receptors.


Asunto(s)
Inflamación , Insuficiencia Renal Crónica , Animales , Fibrosis , Humanos , Inflamación/metabolismo , Riñón/metabolismo , Lisofosfolípidos , Ratones , Esfingosina/análogos & derivados
9.
J Clin Invest ; 116(9): 2403-12, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16917542

RESUMEN

Ang II receptor activation increases cytosolic Ca2+ levels to enhance the synthesis and secretion of aldosterone, a recently identified early pathogenic stimulus that adversely influences cardiovascular homeostasis. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a downstream effector of the Ang II-elicited signaling cascade that serves as a key intracellular Ca2+ sensor to feedback-regulate Ca2+ entry through voltage-gated Ca2+ channels. However, the molecular mechanism(s) by which CaMKII regulates these important physiological targets to increase Ca2+ entry remain unresolved. We show here that CaMKII forms a signaling complex with alpha1H T-type Ca2+ channels, directly interacting with the intracellular loop connecting domains II and III of the channel pore (II-III loop). Activation of the kinase mediated the phosphorylation of Ser1198 in the II-III loop and the positive feedback regulation of channel gating both in intact cells in situ and in cells of the native adrenal zona glomerulosa stimulated by Ang II in vivo. These data define the molecular basis for the in vivo modulation of native T-type Ca2+ channels by CaMKII and suggest that the disruption of this signaling complex in the zona glomerulosa may provide a new therapeutic approach to limit aldosterone production and cardiovascular disease progression.


Asunto(s)
Canales de Calcio Tipo T/fisiología , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Secuencia de Bases , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Proteínas Quinasas Dependientes de Calcio-Calmodulina/genética , Línea Celular , Cartilla de ADN , Activación Enzimática , Humanos , Activación del Canal Iónico/fisiología , Riñón , Datos de Secuencia Molecular , Fosforilación , Proteínas Recombinantes/metabolismo , Transfección
10.
Hypertension ; 73(2): 407-414, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30580687

RESUMEN

The renin-angiotensin system tightly controls aldosterone synthesis. Dysregulation is evident in hypertension (primary aldosteronism), low renin, and resistant hypertension) but also can exist in normotension. Whether chronic, mild aldosterone autonomy can elicit hypertension remains untested. Previously, we reported that global genetic deletion of 2 pore-domain TWIK-relative acid-sensitive potassium channels, TASK-1 and TASK-3, from mice produces striking aldosterone excess, low renin, and hypertension. Here, we deleted TASK-1 and TASK-3 channels selectively from zona glomerulosa cells and generated a model of mild aldosterone autonomy with attendant hypertension that is aldosterone-driven and Ang II (angiotensin II)-independent. This study shows that a zona glomerulosa-specific channel defect can produce mild autonomous hyperaldosteronism sufficient to cause chronic blood pressure elevation.


Asunto(s)
Aldosterona/fisiología , Angiotensina II/fisiología , Hipertensión/etiología , Proteínas del Tejido Nervioso/fisiología , Canales de Potasio de Dominio Poro en Tándem/fisiología , Canales de Potasio/fisiología , Zona Glomerular/fisiología , Animales , Masculino , Ratones , Ratones Noqueados , Sistema Renina-Angiotensina/fisiología
11.
Hypertension ; 70(2): 347-356, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28630209

RESUMEN

Ca2+ drives aldosterone synthesis in the cytosolic and mitochondrial compartments of the adrenal zona glomerulosa cell. Membrane potential across each of these compartments regulates the amplitude of the Ca2+ signal; yet, only plasma membrane ion channels and their role in regulating cell membrane potential have garnered investigative attention as pathological causes of human hyperaldosteronism. Previously, we reported that genetic deletion of TASK-3 channels (tandem pore domain acid-sensitive K+ channels) from mice produces aldosterone excess in the absence of a change in the cell membrane potential of zona glomerulosa cells. Here, we report using yeast 2-hybrid, immunoprecipitation, and electron microscopic analyses that TASK-3 channels are resident in mitochondria, where they regulate mitochondrial morphology, mitochondrial membrane potential, and aldosterone production. This study provides proof of principle that mitochondrial K+ channels, by modulating inner mitochondrial membrane morphology and mitochondrial membrane potential, have the ability to play a pathological role in aldosterone dysregulation in steroidogenic cells.


Asunto(s)
Aldosterona/biosíntesis , Hiperaldosteronismo/metabolismo , Mitocondrias/fisiología , Canales de Potasio de Dominio Poro en Tándem/fisiología , Zona Glomerular/fisiología , Células Cultivadas , Humanos , Potencial de la Membrana Mitocondrial/fisiología
12.
Endocrinology ; 153(8): 3579-86, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22689262

RESUMEN

Aldosterone produced by adrenal zona glomerulosa (ZG) cells plays an important role in maintaining salt/water balance and, hence, blood pressure homeostasis. However, when dysregulated, aldosterone advances renal and cardiovascular disease states. Multiple steps in the steroidogenic pathway require Ca(2+), and the sustained production of aldosterone depends on maintained Ca(2+) entry into the ZG cell. Nevertheless, the recorded membrane potential of isolated ZG cells is extremely hyperpolarized, allowing the opening of only a small fraction of low-voltage-activated Ca(2+) channels of the Ca(v)3.x family, the major Ca(2+) conductance on the ZG cell membrane. As a consequence, to activate sufficient Ca(2+) channels to sustain the production of aldosterone, aldosterone secretagogs would be required to affect large decreases in membrane voltage, a requirement that is inconsistent with the exquisite sensitivity of aldosterone production in vivo to small changes (0.1 mm) in extracellular K(+). In this review, we evaluate the contribution of membrane voltage and voltage-dependent Ca(2+) channels to the control of aldosterone production and consider data highlighting the electrical excitability of the ZG cell. This intrinsic capacity of ZG cells to behave as electrical oscillators provides a platform from which to generate a recurring Ca(2+) signal that is compatible with the lengthy time course of steroidogenesis and provides an alternative model for the physiological regulation of aldosterone production that permits both amplitude and temporal modulation of the Ca(2+) signal.


Asunto(s)
Aldosterona/biosíntesis , Aldosterona/metabolismo , Animales , Calcio/metabolismo , Canales de Calcio/metabolismo , Humanos , Zona Glomerular/metabolismo
13.
Hypertension ; 59(5): 999-1005, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22493079

RESUMEN

Idiopathic primary hyperaldosteronism (IHA) and low-renin essential hypertension (LREH) are common forms of hypertension, characterized by an elevated aldosterone-renin ratio and hypersensitivity to angiotensin II. They are suggested to be 2 states within a disease spectrum that progresses from LREH to IHA as the control of aldosterone production by the renin-angiotensin system is weakened. The mechanism(s) that drives this progression remains unknown. Deletion of Twik-related acid-sensitive K(+) channels (TASK) subunits, TASK-1 and TASK-3, in mice (T1T3KO) produces a model of human IHA. Here, we determine the effect of deleting only TASK-3 (T3KO) on the control of aldosterone production and blood pressure. We find that T3KO mice recapitulate key characteristics of human LREH, salt-sensitive hypertension, mild overproduction of aldosterone, decreased plasma-renin concentration with elevated aldosterone:renin ratio, hypersensitivity to endogenous and exogenous angiotensin II, and failure to suppress aldosterone production with dietary sodium loading. The relative differences in levels of aldosterone output and aldosterone:renin ratio and in autonomy of aldosterone production between T1T3KO and T3KO mice are reminiscent of differences in human hypertensive patients with LREH and IHA. Our studies establish a model of LREH and suggest that loss of TASK channel activity may be one mechanism that advances the syndrome of low renin hypertension.


Asunto(s)
Hiperaldosteronismo/genética , Hipertensión/genética , Hipertensión/fisiopatología , Canales de Potasio/genética , Sistema Renina-Angiotensina/genética , Aldosterona/metabolismo , Angiotensina II/farmacología , Animales , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Humanos , Hiperaldosteronismo/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Canales de Potasio/metabolismo , Distribución Aleatoria , Reacción en Cadena en Tiempo Real de la Polimerasa , Sistema Renina-Angiotensina/fisiología , Sensibilidad y Especificidad , Eliminación de Secuencia , Sodio/metabolismo , Sodio/farmacología
14.
Mol Cell Endocrinol ; 336(1-2): 47-52, 2011 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-21111026

RESUMEN

The stimulation of aldosterone production by acidosis enhances proton excretion and serves to limit disturbances in systemic acid-base equilibrium. Yet, the mechanisms by which protons stimulate aldosterone production from cells of the adrenal cortex remain largely unknown. TWIK-related acid sensitive K channels (TASK) are inhibited by extracellular protons within the physiological range and have emerged as important regulators of aldosterone production in the adrenal cortex. Here we show that congenic C57BL/6J mice with genetic deletion of TASK-1 (K(2P)3.1) and TASK-3 (K(2P)9.1) channel subunits overproduce aldosterone and display an enhanced sensitivity to steroidogenic stimuli, including a more pronounced steroidogenic response to chronic NH(4)Cl loading. Thus, we conclude that TASK channels are not required for the stimulation of aldosterone production by protons but their inhibition by physiological acidosis may contribute to full expression of the steroidogenic response.


Asunto(s)
Acidosis/metabolismo , Aldosterona/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Canales de Potasio/metabolismo , Equilibrio Ácido-Base/efectos de los fármacos , Acidosis/sangre , Acidosis/fisiopatología , Acidosis/orina , Ácidos/metabolismo , Aldosterona/orina , Cloruro de Amonio/administración & dosificación , Cloruro de Amonio/farmacología , Animales , Electrólitos/sangre , Electrólitos/orina , Concentración de Iones de Hidrógeno/efectos de los fármacos , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/deficiencia , Canales de Potasio/deficiencia , Canales de Potasio de Dominio Poro en Tándem/deficiencia , Receptor de Angiotensina Tipo 1/metabolismo , Renina/sangre
15.
J Biol Chem ; 284(12): 7465-73, 2009 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-19131331

RESUMEN

Low voltage-activated (LVA), T-type, calcium channels mediate diverse biological functions and are inhibited by Gbetagamma dimers, yet the molecular events required for channel inhibition remain unknown. Here, we identify protein kinase A (PKA) as a molecular switch that allows Gbeta(2)gammax dimers to effect voltage-independent inhibition of Ca(v)3.2 channels. Inhibition requires phosphorylation of Ser(1107), a critical serine residue on the II-III loop of the channel pore protein. S1107A prevents inhibition of unitary currents by recombinant Gbeta(2)gamma(2) dimers but does not disrupt dimer binding nor change its specificity. Gbetagamma dimers released upon receptor activation also require PKA activity for their inhibitory actions. Hence, dopamine inhibition of Ca(v)3.2 whole cell current is precluded by Gbetagamma-scavenger proteins or a peptide that blocks PKA catalytic activity. Fittingly, when used alone at receptor-selective concentrations, D(1) or D(2) agonists do not elicit channel inhibition yet together synergize to inhibit Ca(v)3.2 channel currents. We propose that a dual-receptor regulatory mechanism is used by dopamine to control Ca(v)3.2 channel activity. This mechanism, for example, would be important in aldosterone producing adrenal glomerulosa cells where channel dysregulation would lead to overproduction of aldosterone and consequent cardiac, renal, and brain target organ damage.


Asunto(s)
Canales de Calcio Tipo T/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Zona Glomerular/metabolismo , Aldosterona/biosíntesis , Aldosterona/genética , Sustitución de Aminoácidos , Canales de Calcio Tipo T/genética , Línea Celular Tumoral , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Dimerización , Dopamina/genética , Dopamina/metabolismo , Agonistas de Dopamina/farmacología , Subunidades beta de la Proteína de Unión al GTP/genética , Subunidades gamma de la Proteína de Unión al GTP/genética , Humanos , Mutación Missense , Fosforilación/efectos de los fármacos , Fosforilación/genética
16.
Proc Natl Acad Sci U S A ; 103(39): 14590-5, 2006 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-16973746

RESUMEN

Gbetagamma, a ubiquitous second messenger, relays external signals from G protein-coupled receptors to networks of intracellular effectors, including voltage-dependent calcium channels. Unlike high-voltage-activated Ca(2+) channels, the inhibition of low-voltage-activated Ca(2+) channels is subtype-dependent and mediated selectively by Gbeta(2)-containing dimers. Yet, the molecular basis for this exquisite selectivity remains unknown. Here, we used pure recombinant Gbetagamma subunits to establish that the Gbeta(2)gamma(2) dimer can selectively reconstitute the inhibition of alpha(1H) channels in isolated membrane patches. This inhibition is the result of a reduction in channel open probability that is not accompanied by a change in channel expression or an alteration in active-channel gating. By exchanging residues between the active Gbeta(2) subunit and the inactive Gbeta(1) subunit, we identified a cluster of amino acids that functionally distinguish Gbeta(2) from other Gbeta subunits. These amino acids on the beta-torus identify a region that is distinct from those regions that contact the Galpha subunit or other effectors.


Asunto(s)
Canales de Calcio Tipo T/metabolismo , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Subunidades de Proteína/metabolismo , Aminoácidos/metabolismo , Células Cultivadas , Humanos , Activación del Canal Iónico , Proteínas Recombinantes/metabolismo
17.
Plant Physiol ; 132(2): 739-47, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12805603

RESUMEN

Transcription of chloroplast genes is subject to control by nucleus-encoded proteins. The chloroplast-encoded RNA polymerase (PEP) is a eubacterial-type RNA polymerase that is presumed to assemble with nucleus-encoded sigma-factors mediating promoter recognition. Recently, families of sigma-factor genes have been identified in several plants including Arabidopsis. One of these genes, Arabidopsis SIG5, encodes a sigma-factor, AtSig5, which is phylogenetically distinct from the other family members. To investigate the role of this plant sigma-factor, two different insertional alleles of the SIG5 gene were identified and characterized. Heterozygous mutant plants showed no visible leaf phenotype, but exhibited siliques containing aborted embryos and unfertilized ovules. Our inability to recover plants homozygous for a SIG5 gene disruption indicates that SIG5 is an essential gene. SIG5 transcripts accumulate in flower tissues, consistent with a role for AtSig5 protein in reproduction. Therefore, SIG5 encodes an essential member of the Arabidopsis sigma-factor family that plays a role in plant reproduction in addition to its previously proposed role in leaf chloroplast gene expression.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Núcleo Celular/genética , Factor sigma/genética , Secuencia de Bases , Cartilla de ADN , ADN Bacteriano/genética , ADN de Plantas/genética , Mutagénesis Insercional , Regiones Promotoras Genéticas , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA