Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 516(4): 1066-1072, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31279526

RESUMEN

Intracellular Ca2+ signals play many important cellular functions such as migration, proliferation and differentiation. Store-operated Ca2+ entry (SOCE) is a major route of Ca2+ entry in nonexcitable cells. The activation of SOCE requires engagement between stromal interaction molecule 1 (STIM1) molecules on the endoplasmic reticulum and Ca2+ release-activated Ca2+ (CRAC) channel Orais (Orai1-3) on the plasma membrane. Accumulating evidence indicates that SOCE plays critical roles in cancer cell proliferation, invasion and metastasis. Here, we used the synthetic intracellular peptides derived from the C-termini of Orai channels to treat the breast cancer cells. We have found that Orai3-CT peptide exhibits stronger binding to STIM1 than Orai1-CT, and Orai3-CT peptide acts in a dominant negative fashion, blocking the STIM1-Orai1 interaction and reducing the Ca2+ entry and proliferation of breast cancer cells.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Canales de Calcio Activados por la Liberación de Calcio/farmacología , Proliferación Celular/efectos de los fármacos , Péptidos/farmacología , Antineoplásicos/química , Neoplasias de la Mama/metabolismo , Calcio/metabolismo , Canales de Calcio/química , Canales de Calcio/farmacología , Canales de Calcio Activados por la Liberación de Calcio/química , Señalización del Calcio/efectos de los fármacos , Femenino , Humanos , Células MCF-7 , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/química , Proteína ORAI1/farmacología , Péptidos/química , Mapas de Interacción de Proteínas/efectos de los fármacos , Molécula de Interacción Estromal 1/metabolismo
2.
Redox Biol ; 75: 103286, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39079386

RESUMEN

Metabolic reprogramming is a hallmark of human cancer, and cancer-specific metabolism provides opportunities for cancer diagnosis, prognosis, and treatment. However, the underlying mechanisms by which metabolic pathways affect the initiation and progression of colorectal cancer (CRC) remain largely unknown. Here, we demonstrate that cysteine is highly enriched in colorectal tumors compared to adjacent non-tumor tissues, thereby promoting tumorigenesis of CRC. Synchronously importing both cysteine and cystine in colorectal cancer cells is necessary to maintain intracellular cysteine levels. Hypoxia-induced reactive oxygen species (ROS) and ER stress regulate the co-upregulation of genes encoding cystine transporters (SLC7A11, SLC3A2) and genes encoding cysteine transporters (SLC1A4, SLC1A5) through the transcription factor ATF4. Furthermore, the metabolic flux from cysteine to reduced glutathione (GSH), which is critical to support CRC growth, is increased due to overexpression of glutathione synthetase GSS in CRC. Depletion of cystine/cysteine by recombinant cyst(e)inase effectively inhibits the growth of colorectal tumors by inducing autophagy in colorectal cancer cells through mTOR-ULK signaling axis. This study demonstrates the underlying mechanisms of cysteine metabolism in tumorigenesis of CRC, and evaluates the potential of cysteine metabolism as a biomarker or a therapeutic target for CRC.

3.
Nat Commun ; 15(1): 6651, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39103330

RESUMEN

Myocardial infarction (MI) has a 5-year mortality rate of more than 50% due to the lack of effective treatments. Interactions between cardiomyocytes and the MI microenvironment (MIM) can determine the progression and fate of infarcted myocardial tissue. Here, a specially designed Melanin-based composite nanomedicines (MCN) is developed to effectively treat MI by reprogramming the MIM. MCN is a nanocomposite composed of polydopamine (P), Prussian blue (PB) and cerium oxide (CexOy) with a Mayuan-like structure, which reprogramming the MIM by the efficient conversion of detrimental substances (H+, reactive oxygen species, and hypoxia) into beneficial status (O2 and H2O). In coronary artery ligation and ischemia reperfusion models of male mice, intravenously injecting MCN specifically targets the damaged area, resulting in restoration of cardiac function. With its promising therapeutic effects, MCN constitutes a new agent for MI treatment and demonstrates potential for clinical application.


Asunto(s)
Cerio , Indoles , Melaninas , Infarto del Miocardio , Nanomedicina , Polímeros , Animales , Melaninas/metabolismo , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/patología , Masculino , Ratones , Nanomedicina/métodos , Indoles/química , Polímeros/química , Cerio/química , Cerio/farmacología , Cerio/administración & dosificación , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Nanocompuestos/química , Modelos Animales de Enfermedad , Especies Reactivas de Oxígeno/metabolismo , Ratones Endogámicos C57BL , Microambiente Celular/efectos de los fármacos , Ferrocianuros
4.
Cell Rep ; 42(3): 112188, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36857183

RESUMEN

PI3K regulatory subunit p85s normally stabilizes and regulates catalytic subunit p110s in the cytoplasm. Recent studies show that p110-free p85s in the nucleus plays important roles in biological processes. However, the mechanisms by which p85s translocate into the nucleus remain elusive. Here, we describe the mechanism by which p85ß translocates into the nucleus to promote ccRCC tumorigenesis. Phosphorylation of p85ß at the Y464 by FAK facilitates its nuclear translocation in the kidney through enhancing the binding of p85ß to KPNA1. PIK3R2/p85ß is highly expressed in ccRCC samples and associated with overall survival of ccRCC patients. Nuclear but not cytoplasmic p85ß performs oncogenic functions by repressing RB1 expression and regulating the G1/S cell cycle transition. Nuclear p85ß represses RB1 expression by stabilizing histone methyltransferase EZH1/EZH2 proteins. Last, the FAK inhibitor defactinib significantly suppresses the tumor growth of ccRCC with high p85ß Y464 levels.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinogénesis , Transformación Celular Neoplásica , Fosforilación , Proteínas de Unión a Retinoblastoma , Transducción de Señal , Ubiquitina-Proteína Ligasas
5.
Cell Death Dis ; 14(3): 183, 2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36878949

RESUMEN

Cancer or endothelial cells preferably catabolize glucose through aerobic glycolysis rather than oxidative phosphorylation. Intracellular ionic signaling has been shown to regulate glucose metabolism, but the underlying ion channel has yet to be identified. RNA-seq, metabolomics and genetic assay revealed that the TRPM7 channel regulated cellular glycolysis. Deletion of TRPM7 suppressed cancer cell glycolysis and reduced the xenograft tumor burden. Deficiency of endothelial TRPM7 inhibited postnatal retinal angiogenesis in mice. Mechanistically, TRPM7 transcriptionally regulated the solute carrier family 2 member 3 (SLC2A3, also known as GLUT3) via Ca2+ influx-induced calcineurin activation. Furthermore, CREB-regulated transcription coactivator 2 (CRTC2) and CREB act downstream of calcineurin to relay Ca2+ signal to SLC2A3 transcription. Expression of the constitutively active CRTC2 or CREB in TRPM7 knockout cell normalized glycolytic metabolism and cell growth. The TRPM7 channel represents a novel regulator of glycolytic reprogramming. Inhibition of the TRPM7-dependent glycolysis could be harnessed for cancer therapy.


Asunto(s)
Células Endoteliales , Canales Catiónicos TRPM , Humanos , Animales , Ratones , Calcineurina , Canales Catiónicos TRPM/genética , Carcinogénesis/genética , Transformación Celular Neoplásica , Glucólisis , Proteínas Serina-Treonina Quinasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA