Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 23(17): 7961-7967, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37624091

RESUMEN

We report on the Tomonaga-Luttinger liquid (TLL) behavior in fully degenerate 1D Dirac Fermions. A ternary van der Waals material Nb9Si4Te18 incorporates in-plane NbTe2 chains, which produce a 1D Dirac band crossing Fermi energy. Tunneling conductance of electrons confined within NbTe2 chains is found to be substantially suppressed at Fermi energy, which follows a power law with a universal temperature scaling, hallmarking a TLL state. The obtained Luttinger parameter of ∼0.15 indicates a strong electron-electron interaction. The TLL behavior is found to be robust against atomic-scale defects, which might be related to the Dirac electron nature. These findings, combined with the tunability of the compound and the merit of a van der Waals material, offer a robust, tunable, and integrable platform to exploit non-Fermi liquid physics.

2.
Nano Lett ; 21(22): 9699-9705, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34738815

RESUMEN

Although a few physical methods were demonstrated for domain wall engineering in various electronic or ferroic materials with broken discrete symmetries, the direct control over the electronic properties of individual domain walls has been extremely limited. Here, we introduce a chemical method to tune the electronic property of domain walls in 1T tantalum disulfide. By using scanning tunneling microscopy and spectroscopy techniques, we find that indium adatoms on 1T-TaS2 have distinct behaviors on the domains with different bulk terminations. Moreover, the adatoms form their own chains along the edges of neighboring domains. The density functional theory calculations reveal a 1D Mott insulating state on a modified domain wall, resulting from the degenerated spin-polarized bands with electron doping from adsorbates and charge transfer from neighboring domains. This work suggests that chemical decoration by adsorbates can be widely used to tune local electronic states of domain walls and various 2D materials.

3.
Chemistry ; 26(29): 6484-6489, 2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-31851390

RESUMEN

In recent years, graphene oxide has been considered as a soluble precursor of graphene for electronic applications. However, the performance lags behind that of graphene due to lattice defects. Here, the relation between the density of defects in the range of 0.2 % and 1.5 % and the transport properties is quantitatively studied. Therefore, the related flakes of monolayers of graphene were prepared from oxo-functionalized graphene (oxo-G). The morphologic structure of oxo-G was imaged by atomic force microscopy (AFM) and scanning tunneling microscopy (STM). Field-effect mobility values were determined to range between 0.3 cm2 V-1 s-1 and 33.2 cm2 V-1 s-1 , which were inversely proportional to the density of defects. These results provide the first quantitative description of the density of defects and transport properties, which plays an important role for potential applications.

4.
Angew Chem Int Ed Engl ; 59(32): 13657-13662, 2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-32315109

RESUMEN

The thermal decomposition of graphene oxide (GO) is a complex process at the atomic level and not fully understood. Here, a subclass of GO, oxo-functionalized graphene (oxo-G), was used to study its thermal disproportionation. We present the impact of annealing on the electronic properties of a monolayer oxo-G flake and correlated the chemical composition and topography corrugation by two-probe transport measurements, XPS, TEM, FTIR and STM. Surprisingly, we found that oxo-G, processed at 300 °C, displays C-C sp3 -patches and possibly C-O-C bonds, next to graphene domains and holes. It is striking that those C-O-C/C-C sp3 -separated sp2 -patches a few nanometers in diameter possess semiconducting properties with a band gap of about 0.4 eV. We propose that sp3 -patches confine conjugated sp2 -C atoms, which leads to the local semiconductor properties. Accordingly, graphene with sp3 -C in double layer areas is a potential class of semiconductors and a potential target for future chemical modifications.

5.
Adv Sci (Weinh) ; 11(3): e2307831, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38059812

RESUMEN

Here, the formation of type-I and type-II electronic junctions with or without any structural discontinuity along a well-defined 1 nm-wide 1D electronic channel within a van der Waals layer is reported. Scanning tunneling microscopy and spectroscopy techniques are employed to investigate the atomic and electronic structure along peculiar domain walls formed on the charge-density-wave phase of 1T-TaS2 . Distinct kinds of abrupt electronic junctions with discontinuities of the band gap along the domain walls are found, some of which even do not have any structural kinks and defects. Density-functional calculations reveal a novel mechanism of the electronic junction formation; they are formed by a kinked domain wall in the layer underneath through substantial electronic interlayer coupling. This work demonstrates that the interlayer electronic coupling can be an effective control knob over nanometer-scale electronic property of 2D atomic monolayers.

6.
Natl Sci Rev ; 7(3): 620-628, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34692081

RESUMEN

Confocal Raman microscopy is important for characterizing 2D materials, but its low throughput significantly hinders its applications. For metastable materials such as graphene oxide (GO), the low throughput is aggravated by the requirement of extremely low laser dose to avoid sample damage. Here we introduce algorithm-improved confocal Raman microscopy (ai-CRM), which increases the Raman scanning rate by one to two orders of magnitude with respect to state-of-the-art works for a variety of 2D materials. Meanwhile, GO can be imaged at a laser dose that is two to three orders of magnitude lower than previously reported, such that laser-induced variations of the material properties can be avoided. ai-CRM also enables fast and spatially resolved quantitative analysis, and is readily extended to 3D mapping of composite materials. Since ai-CRM is based on general mathematical principles, it is cost-effective, facile to implement and universally applicable to other hyperspectral imaging methods.

7.
RSC Adv ; 9(65): 38011-38016, 2019 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-35541787

RESUMEN

The substrate effect on the electronic transport of graphene with a density of defects of about 0.5% (0.5%G) is studied. Devices composed of monolayer 0.5%G, partially deposited on SiO2 and h-BN were used for transport measurements. We find that the 0.5%G on h-BN exhibits ambipolar transfer behaviours under ambient conditions, in comparison to unipolar p-type characters on SiO2 for the same flake. While intrinsic defects in graphene cause scattering, the use of h-BN as a substrate reduces p-doping.

8.
J Phys Chem C Nanomater Interfaces ; 122(44): 25498-25505, 2018 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-30450151

RESUMEN

HfSe2 is a very good candidate for a transition metal dichalcogenide-based field-effect transistor owing to its moderate band gap of about 1 eV and its high-κ dielectric native oxide. Unfortunately, the experimentally determined charge carrier mobility is about 3 orders of magnitude lower than the theoretically predicted value. This strong deviation calls for a detailed investigation of the physical and electronic properties of HfSe2. Here, we have studied the structure, density, and density of states of several types of defects that are abundant on the HfSe2 surface using scanning tunneling microscopy and spectroscopy. Compared to MoS2 and WSe2, HfSe2 exhibits similar type of defects, albeit with a substantially higher density of 9 × 1011 cm-2. The most abundant defect is a subsurface defect, which shows up as a dim feature in scanning tunneling microscopy images. These dim dark defects have a substantially larger band gap (1.25 eV) than the pristine surface (1 eV), suggesting a substitution of the Hf atom by another atom. The high density of defects on the HfSe2 surface leads to very low Schottky barrier heights. Conductive atomic force microscopy measurements reveal a very small dependence of the Schottky barrier height on the work function of the metals, suggesting a strong Fermi-level pinning. We attribute the observed Fermi-level pinning (pinning factor ∼0.1) to surface distortions and Se/Hf defects. In addition, we have also studied the HfSe2 surface after the exposure to air by scanning tunneling microscopy and conductive atomic force microscopy. Partly oxidized layers with band gaps of 2 eV and Schottky barrier heights of ∼0.6 eV were readily found on the surface. Our experiments reveal that HfSe2 is very air-sensitive, implying that capping or encapsulating of HfSe2, in order to protect it against oxidation, is a necessity for technological applications.

9.
ACS Appl Mater Interfaces ; 9(22): 19278-19286, 2017 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-28508628

RESUMEN

Understanding the electronic contact between molybdenum disulfide (MoS2) and metal electrodes is vital for the realization of future MoS2-based electronic devices. Natural MoS2 has the drawback of a high density of both metal and sulfur defects and impurities. We present evidence that subsurface metal-like defects with a density of ∼1011 cm-2 induce negative ionization of the outermost S atom complex. We investigate with high-spatial-resolution surface characterization techniques the effect of these defects on the local conductance of MoS2. Using metal nanocontacts (contact area < 6 nm2), we find that subsurface metal-like defects (and not S-vacancies) drastically decrease the metal/MoS2 Schottky barrier height as compared to that in the pristine regions. The magnitude of this decrease depends on the contact metal. The decrease of the Schottky barrier height is attributed to strong Fermi level pinning at the defects. Indeed, this is demonstrated in the measured pinning factor, which is equal to ∼0.1 at defect locations and ∼0.3 at pristine regions. Our findings are in good agreement with the theoretically predicted values. These defects provide low-resistance conduction paths in MoS2-based nanodevices and will play a prominent role as the device junction contact area decreases in size.

10.
Beilstein J Nanotechnol ; 8: 1952-1960, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29046843

RESUMEN

We report a combined experimental and theoretical study of the growth of sub-monolayer amounts of silicon (Si) on molybdenum disulfide (MoS2). At room temperature and low deposition rates we have found compelling evidence that the deposited Si atoms intercalate between the MoS2 layers. Our evidence relies on several experimental observations: (1) Upon the deposition of Si on pristine MoS2 the morphology of the surface transforms from a smooth surface to a hill-and-valley surface. The lattice constant of the hill-and-valley structure amounts to 3.16 Å, which is exactly the lattice constant of pristine MoS2. (2) The transitions from hills to valleys are not abrupt, as one would expect for epitaxial islands growing on-top of a substrate, but very gradual. (3) I(V) scanning tunneling spectroscopy spectra recorded at the hills and valleys reveal no noteworthy differences. (4) Spatial maps of dI/dz reveal that the surface exhibits a uniform work function and a lattice constant of 3.16 Å. (5) X-ray photo-electron spectroscopy measurements reveal that sputtering of the MoS2/Si substrate does not lead to a decrease, but an increase of the relative Si signal. Based on these experimental observations we have to conclude that deposited Si atoms do not reside on the MoS2 surface, but rather intercalate between the MoS2 layers. Our conclusion that Si intercalates upon the deposition on MoS2 is at variance with the interpretation by Chiappe et al. (Adv. Mater.2014, 26, 2096-2101) that silicon forms a highly strained epitaxial layer on MoS2. Finally, density functional theory calculations indicate that silicene clusters encapsulated by MoS2 are stable.

11.
ACS Appl Mater Interfaces ; 7(9): 5066-75, 2015 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-25664585

RESUMEN

In this work, an electric field-induced giant strain response and excellent photoluminescence-enhancement effect was obtained in a rare-earth ion modified lead-free piezoelectric system. Pr(3+)-modified 0.93(Bi0.5Na0.5)TiO3-0.07BaTiO3 ceramics were designed and fabricated by a conventional fabrication process. The ferroelectric, dielectric, piezoelectric, and photoluminescence performances were systematically studied, and a schematic phase diagram was constructed. It was found the Pr(3+) substitution induced a transition from ferroelectric a long-range order structure to a relaxor pseudocubic phase with short-range coherence structure. Around a critical composition of 0.8 mol % Pr(3+), a giant reversible strain of ∼0.43% with a normalized strain Smax/Emax of up to 770 pm/V was obtained at ∼5 kV/mm. Furthermore, the in situ electric field enhanced the photoluminescence intensity by ∼40% in the proposed system. These findings have great potential for actuator and multifunctional device applications, which may also open up a range of new applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA