Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Nat Immunol ; 18(6): 665-674, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28459435

RESUMEN

Tissue macrophages provide immunological defense and contribute to the establishment and maintenance of tissue homeostasis. Here we used constitutive and inducible mutagenesis to delete the nuclear transcription regulator Mecp2 in macrophages. Mice that lacked the gene encoding Mecp2, which is associated with Rett syndrome, in macrophages did not show signs of neurodevelopmental disorder but displayed spontaneous obesity, which was linked to impaired function of brown adipose tissue (BAT). Specifically, mutagenesis of a BAT-resident Cx3Cr1+ macrophage subpopulation compromised homeostatic thermogenesis but not acute, cold-induced thermogenesis. Mechanistically, malfunction of BAT in pre-obese mice with mutant macrophages was associated with diminished sympathetic innervation and local titers of norepinephrine, which resulted in lower expression of thermogenic factors by adipocytes. Mutant macrophages overexpressed the signaling receptor and ligand PlexinA4, which might contribute to the phenotype by repulsion of sympathetic axons expressing the transmembrane semaphorin Sema6A. Collectively, we report a previously unappreciated homeostatic role for macrophages in the control of tissue innervation. Disruption of this circuit in BAT resulted in metabolic imbalance.


Asunto(s)
Tejido Adiposo Pardo/inmunología , Macrófagos/inmunología , Proteína 2 de Unión a Metil-CpG/genética , Sistema Nervioso Simpático/metabolismo , Termogénesis/inmunología , Adipocitos Marrones , Tejido Adiposo Pardo/inervación , Tejido Adiposo Pardo/metabolismo , Animales , Axones/metabolismo , Receptor 1 de Quimiocinas CX3C , Metabolismo Energético/inmunología , Citometría de Flujo , Homeostasis , Immunoblotting , Macrófagos/metabolismo , Ratones , Mutagénesis Sitio-Dirigida , Proteínas del Tejido Nervioso/metabolismo , Norepinefrina/metabolismo , Obesidad/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Superficie Celular/metabolismo , Receptores de Quimiocina/metabolismo , Semaforinas/metabolismo
2.
Cell Mol Life Sci ; 80(1): 16, 2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36564647

RESUMEN

In recent years, there has been growing interest in SARM1 as a potential breakthrough drug target for treating various pathologies of axon degeneration. SARM1-mediated axon degeneration relies on its TIR domain NADase activity, but recent structural data suggest that the non-catalytic ARM domain could also serve as a pharmacological site as it has an allosteric inhibitory function. Here, we screened for synthetic small molecules that inhibit SARM1, and tested a selected set of these compounds in a DRG axon degeneration assay. Using cryo-EM, we found that one of the newly discovered inhibitors, a calmidazolium designated TK106, not only stabilizes the previously reported inhibited conformation of the octamer, but also a meta-stable structure: a duplex of octamers (16 protomers), which we have now determined to 4.0 Å resolution. In the duplex, each ARM domain protomer is engaged in lateral interactions with neighboring protomers, and is further stabilized by contralateral contacts with the opposing octamer ring. Mutagenesis of the duplex contact sites leads to a moderate increase in SARM1 activation in cultured cells. Based on our data we propose that the duplex assembly constitutes an additional auto-inhibition mechanism that tightly prevents pre-mature activation and axon degeneration.


Asunto(s)
Proteínas del Dominio Armadillo , Axones , Axones/metabolismo , Subunidades de Proteína , Células Cultivadas , Dominios Proteicos , Proteínas del Dominio Armadillo/metabolismo , Mutagénesis
4.
J Neurosci ; 40(28): 5413-5430, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32499377

RESUMEN

Diverse neuronal populations with distinct cellular morphologies coordinate the complex function of the nervous system. Establishment of distinct neuronal morphologies critically depends on signaling pathways that control axonal and dendritic development. The Sema3A-Nrp1/PlxnA4 signaling pathway promotes cortical neuron basal dendrite arborization but also repels axons. However, the downstream signaling components underlying these disparate functions of Sema3A signaling are unclear. Using the novel PlxnA4KRK-AAA knock-in male and female mice, generated by CRISPR/cas9, we show here that the KRK motif in the PlxnA4 cytoplasmic domain is required for Sema3A-mediated cortical neuron dendritic elaboration but is dispensable for inhibitory axon guidance. The RhoGEF FARP2, which binds to the KRK motif, shows identical functional specificity as the KRK motif in the PlxnA4 receptor. We find that Sema3A activates the small GTPase Rac1, and that Rac1 activity is required for dendrite elaboration but not axon growth cone collapse. This work identifies a novel Sema3A-Nrp1/PlxnA4/FARP2/Rac1 signaling pathway that specifically controls dendritic morphogenesis but is dispensable for repulsive guidance events. Overall, our results demonstrate that the divergent signaling output from multifunctional receptor complexes critically depends on distinct signaling motifs, highlighting the modular nature of guidance cue receptors and its potential to regulate diverse cellular responses.SIGNIFICANCE STATEMENT The proper formation of axonal and dendritic morphologies is crucial for the precise wiring of the nervous system that ultimately leads to the generation of complex functions in an organism. The Semaphorin3A-Neuropilin1/Plexin-A4 signaling pathway has been shown to have multiple key roles in neurodevelopment, from axon repulsion to dendrite elaboration. This study demonstrates that three specific amino acids, the KRK motif within the Plexin-A4 receptor cytoplasmic domain, are required to coordinate the downstream signaling molecules to promote Sema3A-mediated cortical neuron dendritic elaboration, but not inhibitory axon guidance. Our results unravel a novel Semaphorin3A-Plexin-A4 downstream signaling pathway and shed light on how the disparate functions of axon guidance and dendritic morphogenesis are accomplished by the same extracellular ligand in vivo.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Dendritas/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Plasticidad Neuronal/fisiología , Neuropéptidos/metabolismo , Receptores de Superficie Celular/metabolismo , Transducción de Señal/fisiología , Proteína de Unión al GTP rac1/metabolismo , Animales , Axones/metabolismo , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Noqueados , Neuronas/metabolismo , Semaforina-3A/metabolismo
5.
Nature ; 495(7442): 474-80, 2013 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-23474986

RESUMEN

CLP1 was the first mammalian RNA kinase to be identified. However, determining its in vivo function has been elusive. Here we generated kinase-dead Clp1 (Clp1(K/K)) mice that show a progressive loss of spinal motor neurons associated with axonal degeneration in the peripheral nerves and denervation of neuromuscular junctions, resulting in impaired motor function, muscle weakness, paralysis and fatal respiratory failure. Transgenic rescue experiments show that CLP1 functions in motor neurons. Mechanistically, loss of CLP1 activity results in accumulation of a novel set of small RNA fragments, derived from aberrant processing of tyrosine pre-transfer RNA. These tRNA fragments sensitize cells to oxidative-stress-induced p53 (also known as TRP53) activation and p53-dependent cell death. Genetic inactivation of p53 rescues Clp1(K/K) mice from the motor neuron loss, muscle denervation and respiratory failure. Our experiments uncover a mechanistic link between tRNA processing, formation of a new RNA species and progressive loss of lower motor neurons regulated by p53.


Asunto(s)
Neuronas Motoras/metabolismo , Neuronas Motoras/patología , ARN de Transferencia de Tirosina/metabolismo , Factores de Transcripción/metabolismo , Esclerosis Amiotrófica Lateral , Animales , Animales Recién Nacidos , Axones/metabolismo , Axones/patología , Muerte Celular , Diafragma/inervación , Pérdida del Embrión , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Exones/genética , Femenino , Fibroblastos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Atrofia Muscular Espinal , Enfermedades Neuromusculares/metabolismo , Enfermedades Neuromusculares/patología , Estrés Oxidativo , Procesamiento Postranscripcional del ARN , ARN de Transferencia de Tirosina/genética , Proteínas de Unión al ARN , Respiración , Nervios Espinales/citología , Factores de Transcripción/deficiencia , Proteína p53 Supresora de Tumor/metabolismo , Tirosina/genética , Tirosina/metabolismo
7.
Cell Mol Life Sci ; 72(1): 101-19, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25213356

RESUMEN

The precise wiring of the nervous system is a combined outcome of progressive and regressive events during development. Axon guidance and synapse formation intertwined with cell death and neurite pruning sculpt the mature circuitry. It is now well recognized that pruning of dendrites and axons as means to refine neuronal networks, is a wide spread phenomena required for the normal development of vertebrate and invertebrate nervous systems. Here we will review the arising principles of cellular and molecular mechanisms of neurite pruning. We will discuss these principles in light of studies in multiple neuronal systems, and speculate on potential explanations for the emergence of neurite pruning as a mechanism to sculpt the nervous system.


Asunto(s)
Red Nerviosa/fisiología , Vías Nerviosas/crecimiento & desarrollo , Neuritas/fisiología , Neurogénesis/fisiología , Sinapsis/fisiología , Animales , Humanos , Transducción de Señal
8.
EMBO J ; 29(15): 2635-45, 2010 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-20606624

RESUMEN

The correct navigation of axons to their targets depends on guidance molecules in the extra-cellular environment. Differential responsiveness to a particular guidance cue is largely an outcome of disparity in the expression of its receptors on the reacting axons. Here, we show that the differential responsiveness of sympathetic and sensory neurons to the transmembrane Semaphorin Sema6A is mainly determined by its co-expression in the responding neurons. Both sympathetic and sensory neurons express the Sema6A receptor Plexin-A4, but only sympathetic neurons respond to it. The expression of Sema6A counteracts this responsiveness and is detected only in sensory neurons. Remarkably, sensory neurons that lack Sema6A gain sensitivity to it in a Plexin-A4-dependent manner. Using heterologus systems, we show that the co-expression of Sema6A and Plexin-A4 hinders the binding of exogenous ligand, suggesting that a Sema6A-Plexin-A4 cis interaction serves as an inhibitory mechanism. Finally, we provide evidence for differential modes of interaction in cis versus in trans. Thus, co-expression of a transmembrane cue together with its receptor can serve as a guidance response modulator.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Receptores de Superficie Celular/metabolismo , Semaforinas/metabolismo , Animales , Células Cultivadas , Chlorocebus aethiops , Humanos , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/deficiencia , Unión Proteica , Receptores de Superficie Celular/deficiencia , Semaforinas/deficiencia
9.
Sci Signal ; 17(819): eadh7673, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38227686

RESUMEN

The precise development of neuronal morphologies is crucial to the establishment of synaptic circuits and, ultimately, proper brain function. Signaling by the axon guidance cue semaphorin 3A (Sema3A) and its receptor complex of neuropilin-1 and plexin-A4 has multifunctional outcomes in neuronal morphogenesis. Downstream activation of the RhoGEF FARP2 through interaction with the lysine-arginine-lysine motif of plexin-A4 and consequent activation of the small GTPase Rac1 promotes dendrite arborization, but this pathway is dispensable for axon repulsion. Here, we investigated the interplay of small GTPase signaling mechanisms underlying Sema3A-mediated dendritic elaboration in mouse layer V cortical neurons in vitro and in vivo. Sema3A promoted the binding of the small GTPase Rnd1 to the amino acid motif lysine-valine-serine (LVS) in the cytoplasmic domain of plexin-A4. Rnd1 inhibited the activity of the small GTPase RhoA and the kinase ROCK, thus supporting the activity of the GTPase Rac1, which permitted the growth and branching of dendrites. Overexpression of a dominant-negative RhoA, a constitutively active Rac1, or the pharmacological inhibition of ROCK activity rescued defects in dendritic elaboration in neurons expressing a plexin-A4 mutant lacking the LVS motif. Our findings provide insights into the previously unappreciated balancing act between Rho and Rac signaling downstream of specific motifs in plexin-A4 to mediate Sema3A-dependent dendritic elaboration in mammalian cortical neuron development.


Asunto(s)
Moléculas de Adhesión Celular , Proteínas de Unión al GTP Monoméricas , Proteínas del Tejido Nervioso , Semaforinas , Ratones , Animales , Proteínas de Unión al GTP Monoméricas/metabolismo , Semaforina-3A/genética , Semaforina-3A/metabolismo , Lisina/metabolismo , Neuronas/metabolismo , Dendritas/metabolismo , Semaforinas/metabolismo , Mamíferos/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo
10.
Cell Rep ; 42(10): 113257, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37851573

RESUMEN

Nociceptive axons undergo remodeling as they innervate their targets during development and in response to environmental insults and pathological conditions. How is nociceptive morphogenesis regulated? Here, we show that the microtubule destabilizer kinesin family member 2A (Kif2a) is a key regulator of nociceptive terminal structures and pain sensitivity. Ablation of Kif2a in sensory neurons causes hyperinnervation and hypersensitivity to noxious stimuli in young adult mice, whereas touch sensitivity and proprioception remain unaffected. Computational modeling predicts that structural remodeling is sufficient to explain the phenotypes. Furthermore, Kif2a deficiency triggers a transcriptional response comprising sustained upregulation of injury-related genes and homeostatic downregulation of highly specific channels and receptors at the late stage. The latter effect can be predicted to relieve the hyperexcitability of nociceptive neurons, despite persisting morphological aberrations, and indeed correlates with the resolution of pain hypersensitivity. Overall, we reveal a critical control node defining nociceptive terminal structure, which is regulating nociception.


Asunto(s)
Cinesinas , Nocicepción , Proteínas Represoras , Animales , Ratones , Cinesinas/genética , Neuronas/fisiología , Dolor , Proteínas Represoras/genética
11.
J Neurosci ; 31(18): 6741-9, 2011 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-21543603

RESUMEN

Dorsal root ganglia (DRG) contain somatosensory neurons of diverse sensory modalities. Among these different types of sensory neurons, the molecular mechanisms that regulate the development and specification of touch neurons are the least well understood. We took a candidate approach and searched for transcription factors that are expressed in subsets of DRG neurons, and found that the transcription factor Shox2 (short stature homeobox 2) is expressed in subpopulations of TrkB (tropomyosin-related kinase B)- and Ret-expressing neurons at neonatal stages. Since TrkB is a known marker that is selectively expressed in touch sensory neurons, we decided to examine the function of Shox2 in specifying TrkB-positive DRG neurons. Conditional deletion of Shox2 in neural crest cells (which give rise to all DRG neurons) caused a 60 ∼ 65% reduction in the number of TrkB-expressing neurons. It also resulted in an increase in coexpression of TrkC in Ret-positive sensory neurons. Deletion of Shox2 in differentiating DRG neurons at later time points caused only a moderate reduction in TrkB expression. Overexpression of Shox2 in all neural crest cells resulted in a small increase in the number of TrkB-expressing neurons. Finally, Shox2 deletion also caused reduced touch sensory axonal innervation to layers III/IV of the spinal cord. Together, our findings identify Shox2 as an essential but not sufficient component of the transcription programs required in neural progenitor cells for the proper specification of subsets of TrkB-expressing touch/mechanosensory neurons.


Asunto(s)
Ganglios Espinales/metabolismo , Proteínas de Homeodominio/metabolismo , Mecanorreceptores/metabolismo , Células-Madre Neurales/metabolismo , Receptor trkB/metabolismo , Animales , Recuento de Células , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Noqueados , Proteínas Proto-Oncogénicas c-ret/genética , Proteínas Proto-Oncogénicas c-ret/metabolismo , Receptor trkB/genética , Receptor trkC/genética , Receptor trkC/metabolismo
12.
EMBO J ; 27(11): 1549-62, 2008 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-18464795

RESUMEN

Axonal receptors for class 3 semaphorins (Sema3s) are heterocomplexes of neuropilins (Nrps) and Plexin-As signalling coreceptors. In the developing cerebral cortex, the Ig superfamily cell adhesion molecule L1 associates with Nrp1. Intriguingly, the genetic removal of L1 blocks axon responses of cortical neurons to Sema3A in vitro despite the expression of Plexin-As in the cortex, suggesting either that L1 substitutes for Plexin-As or that L1 and Plexin-A are both required and mediate distinct roles. We report that association of Nrp1 with L1 but not Plexin-As mediates the recruitment and activation of a Sema3A-induced focal adhesion kinase-mitogen-activated protein kinase cascade. This signalling downstream of L1 is needed for the disassembly of adherent points formed in growth cones and subsequently their collapse response to Sema3A. Plexin-As and L1 are coexpressed and present in common complexes in cortical neurons and both dominant-negative forms of Plexin-A and L1 impair their response to Sema3A. Consistently, Nrp1-expressing cortical projections are defective in mice lacking Plexin-A3, Plexin-A4 or L1. This reveals that specific signalling activities downstream of L1 and Plexin-As cooperate for mediating the axon guidance effects of Sema3A.


Asunto(s)
Corteza Cerebral/crecimiento & desarrollo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Conos de Crecimiento/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Neuropilina-1/metabolismo , Semaforina-3A/metabolismo , Animales , Axones/metabolismo , Adhesión Celular , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Ratones , Ratones Mutantes , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Molécula L1 de Adhesión de Célula Nerviosa/genética , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Transducción de Señal
13.
J Neural Transm (Vienna) ; 119(11): 1317-25, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22592935

RESUMEN

Peripheral neuropathy is a devastating complication of diabetes conferring vast morbidity and mortality. Despite prolonged efforts to elucidate the mechanisms underlying diabetic related neuropathic phenomena and develop effective therapies, current treatment is for the most part glycemic control and symptomatic care. This is partially due to the intricate pathophysiology of diabetic neuropathy and the scarcity of valid experimental models. The aim of the study was to establish novel systems enabling monitoring and dissection of significant processes in the development of diabetic neuropathy. In a non-invasive in vivo model, two-photon microscopy is applied to evaluate mechanoreceptors (Meissner corpuscles) within an intact footpad of transgenic mice expressing a fluorescent neuronal tracer. By applying this advanced technology, which couples potent tissue penetration with superb resolution, we documented qualitative and quantitative diabetes-specific alterations in these sensory structures. Detection of such changes previously required laborious invasive histopathological techniques. In parallel, we present an ex vivo system that mimics the native microenvironment of the nerve ending via a unique co-culture of primary sensory neurons and thin skin slices. In conjunction with innovative high-throughput digital axonal measurements and computerized quantification tools, this method enables an unbiased exploration of neuronal autonomous and non-autonomous malfunctions. Using this setup we demonstrate that while the diabetic nerve retains a near-normal growth and regeneration capacities, the diabetic skin exhibits a decreased ability to support axonal outgrowth. Thus, an early target organ failure rather than intrinsic neuronal failure may initiate the neuropathy. Overall, the illustrated experimental platforms may greatly facilitate the holistic investigation of diabetic neuropathy.


Asunto(s)
Nefropatías Diabéticas/diagnóstico , Nefropatías Diabéticas/fisiopatología , Monitoreo Fisiológico/métodos , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Glucemia , Células Cultivadas , Técnicas de Cocultivo , Nefropatías Diabéticas/sangre , Nefropatías Diabéticas/inducido químicamente , Modelos Animales de Enfermedad , Embrión de Mamíferos , Ganglios Espinales/citología , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Mecanorreceptores/efectos de los fármacos , Mecanorreceptores/patología , Ratones , Ratones Endogámicos ICR , Ratones Transgénicos , Neuronas/metabolismo , Piel/inervación , Piel/patología , Estreptozocina/toxicidad
14.
Neuron ; 110(14): 2204-2206, 2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35863317

RESUMEN

How transcription factors orchestrate the combinatorial expression of cell-surface proteins that, in turn, specify the wiring of the nervous system is an open question. In this issue of Neuron, Xie et al. reveal a new, unexpected layer of complexity.


Asunto(s)
Neuronas , Factores de Transcripción , Sistema Nervioso , Neuronas/metabolismo , Factores de Transcripción/metabolismo
15.
J Neurosci ; 30(18): 6375-86, 2010 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-20445064

RESUMEN

Selective degeneration of neuronal projections and neurite pruning are critical for establishment and maintenance of functional neural circuits in both insects and mammals. However, the molecular mechanisms that govern developmental neurite pruning versus injury-induced neurite degeneration are still mostly unclear. Here, we show that the effector caspases 6 and 3 are both expressed within axons and that, on trophic deprivation, they exhibit distinct modes of activation. Surprisingly, inhibition of caspases is not sufficient for axonal protection and a parallel modulation of a NAD(+)-sensitive pathway is required. The proapoptotic protein BAX is a key element in both pathways as its genetic ablation protected sensory axons against developmental degeneration both in vitro and in vivo. Last, we demonstrate that both pathways are also involved in developmental dendritic pruning in Drosophila. More specifically, the mouse Wld(S) (Wallerian degeneration slow) protein, which is mainly composed of the full-length sequence of the NAD(+) biosynthetic Nmnat1 enzyme, can suppress dendritic pruning in C4da (class IV dendritic arborization) sensory neurons in parallel to the fly effector caspases. These findings indicate that two distinct autodestruction pathways act separately or in concert to regulate developmental neurite pruning.


Asunto(s)
Caspasas/genética , Proteínas de Drosophila/genética , Drosophila , NAD/farmacología , Degeneración Nerviosa/prevención & control , Proteínas del Tejido Nervioso/genética , Transducción de Señal/genética , Proteína X Asociada a bcl-2/genética , Animales , Proteínas Reguladoras de la Apoptosis/antagonistas & inhibidores , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Axones/metabolismo , Caspasa 3/metabolismo , Caspasa 6/metabolismo , Inhibidores de Caspasas , Células Cultivadas , Dendritas/metabolismo , Drosophila/efectos de los fármacos , Drosophila/embriología , Drosophila/genética , Drosophila/metabolismo , Inhibidores Enzimáticos/farmacología , Ganglios Espinales/anatomía & histología , Ganglios Espinales/embriología , Ganglios Espinales/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Degeneración Nerviosa/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Células Receptoras Sensoriales/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína X Asociada a bcl-2/metabolismo
16.
Life Sci Alliance ; 3(7)2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32414840

RESUMEN

During development, neurons adjust their energy balance to meet the high demands of robust axonal growth and branching. The mechanisms that regulate this tuning are largely unknown. Here, we show that sensory neurons lacking liver kinase B1 (Lkb1), a master regulator of energy homeostasis, exhibit impaired axonal growth and branching. Biochemical analysis of these neurons revealed reduction in axonal ATP levels, whereas transcriptome analysis uncovered down-regulation of Efhd1 (EF-hand domain family member D1), a mitochondrial Ca2+-binding protein. Genetic ablation of Efhd1 in mice resulted in reduced axonal morphogenesis as well as enhanced neuronal death. Strikingly, this ablation causes mitochondrial dysfunction and a decrease in axonal ATP levels. Moreover, Efhd1 KO sensory neurons display shortened mitochondria at the axonal growth cones, activation of the AMP-activated protein kinase (AMPK)-Ulk (Unc-51-like autophagy-activating kinase 1) pathway and an increase in autophagic flux. Overall, this work uncovers a new mitochondrial regulator that is required for axonal morphogenesis.


Asunto(s)
Axones/metabolismo , Proteínas de Unión al Calcio/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas Mitocondriales/genética , Neurogénesis/genética , Neuronas/citología , Neuronas/metabolismo , Adenosina Trifosfato , Animales , Secuencia de Bases , Biomarcadores , Proteínas de Unión al Calcio/metabolismo , Polaridad Celular/genética , Células Cultivadas , Técnica del Anticuerpo Fluorescente , Ratones , Ratones Noqueados , Ratones Transgénicos , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Morfogénesis/genética , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/metabolismo
17.
Elife ; 92020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-33185189

RESUMEN

SARM1, an executor of axonal degeneration, displays NADase activity that depletes the key cellular metabolite, NAD+, in response to nerve injury. The basis of SARM1 inhibition and its activation under stress conditions are still unknown. Here, we present cryo-EM maps of SARM1 at 2.9 and 2.7 Å resolutions. These indicate that SARM1 homo-octamer avoids premature activation by assuming a packed conformation, with ordered inner and peripheral rings, that prevents dimerization and activation of the catalytic domains. This inactive conformation is stabilized by binding of SARM1's own substrate NAD+ in an allosteric location, away from the catalytic sites. This model was validated by mutagenesis of the allosteric site, which led to constitutively active SARM1. We propose that the reduction of cellular NAD+ concentration contributes to the disassembly of SARM1's peripheral ring, which allows formation of active NADase domain dimers, thereby further depleting NAD+ to cause an energetic catastrophe and cell death.


Asunto(s)
Proteínas del Dominio Armadillo/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas del Dominio Armadillo/genética , Supervivencia Celular , Microscopía por Crioelectrón , Proteínas del Citoesqueleto/genética , Regulación de la Expresión Génica , Glicerol/química , Células HEK293 , Humanos , Modelos Moleculares , Conformación Proteica
18.
Neuron ; 45(4): 513-23, 2005 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-15721238

RESUMEN

The class 3 Semaphorins Sema3A and Sema3F are potent axonal repellents that cause repulsion by binding Neuropilin-1 and Neuropilin-2, respectively. Plexins are implicated as signaling coreceptors for the Neuropilins, but the identity of the Plexins that transduce Sema3A and Sema3F responses in vivo is uncertain. Here, we show that Plexin-A3 and -A4 are key determinants of these responses, through analysis of a Plexin-A3/Plexin-A4 double mutant mouse. Sensory and sympathetic neurons from the double mutant are insensitive to Sema3A and Sema3F in vitro, and defects in axonal projections in vivo correspond to those seen in Neuropilin-1 and -2 mutants. Interestingly, we found a differential requirement for these two Plexins: signaling via Neuropilin-1 is mediated principally by Plexin-A4, whereas signaling via Neuropilin-2 is mediated principally by Plexin-A3. Thus, Plexin-A3 and -A4 contribute to the specificity of axonal responses to class 3 Semaphorins.


Asunto(s)
Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas Aferentes/metabolismo , Sistema Nervioso Periférico/citología , Receptores de Superficie Celular/metabolismo , Semaforina-3A/metabolismo , Alelos , Aminoácidos/metabolismo , Animales , Axones/metabolismo , Northern Blotting/métodos , Southern Blotting/métodos , Encéfalo/embriología , Encéfalo/metabolismo , Células Cultivadas , Chlorocebus aethiops , Técnicas de Cocultivo/métodos , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica , Genotipo , Inmunohistoquímica/métodos , Ratones , Ratones Noqueados , Modelos Biológicos , Proteínas del Tejido Nervioso/genética , Proteínas de Neurofilamentos/metabolismo , ARN Mensajero/biosíntesis , Receptores de Superficie Celular/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Transfección
19.
J Neurosci ; 28(47): 12427-32, 2008 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-19020035

RESUMEN

Extensive neuronal cell death during development is believed to be due to a limiting supply of neurotrophic factors. In vitro studies suggest that axon guidance molecules directly regulate neuronal survival, raising the possibility that they play a direct role in neuronal cell death in vivo. However, guidance errors may also influence survival indirectly due to loss of target-derived neurotrophic support. The role of guidance molecules in neuronal death in vivo has thus been difficult to decipher. Semaphorin3A, a repulsive guidance cue for sensory neurons, can induce sensory neuron death in vitro. Null mice studies of the Semaphorin3A coreceptors showed that guidance activity is mediated by PlexinA4, but PlexinA3 partially compensates in PlexinA4(-/-) mice. Here we demonstrate that both Plexins contribute to Sema3A-induced cell death in vitro, albeit in a different hierarchy. PlexinA3 is absolutely required, while PlexinA4 makes a smaller contribution to cell death. We found that PlexinA3(-/-) mice, which, unlike PlexinA4(-/-) mice, do not exhibit sensory axon patterning defects, show reduced neuronal apoptosis and an increased number of DRG neurons. Semaphorin3A involvement in neuronal death in vivo was demonstrated by a sensitization experiment using the proapoptotic effector Bax. Our results identify Plexins as mediators of Semaphorin-induced cell death in vitro, and provide the first evidence implicating Semaphorin/Plexin signaling in neuronal survival independent of its role in axon guidance. The results also support the idea that naturally occurring neuronal cell death reflects not only competition for target-derived trophic factors, but also the action of proapoptotic signaling via a Semaphorin/Plexin pathway.


Asunto(s)
Apoptosis/fisiología , Ganglios Espinales/citología , Ganglios Espinales/embriología , Proteínas del Tejido Nervioso/fisiología , Neuronas/fisiología , Receptores de Superficie Celular/fisiología , Animales , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Recuento de Células/métodos , Proliferación Celular , Células Cultivadas , Embrión de Mamíferos , Femenino , Proteínas de Homeodominio/metabolismo , Humanos , Etiquetado Corte-Fin in Situ/métodos , Proteínas con Homeodominio LIM , Ratones , Ratones Noqueados , Ratones Mutantes , Mutación , Factor de Crecimiento Nervioso/farmacología , Embarazo , Semaforina-3A/farmacología , Semaforinas/genética , Estadísticas no Paramétricas , Factores de Tiempo , Factores de Transcripción , Transfección/métodos , Proteína X Asociada a bcl-2/deficiencia
20.
Elife ; 82019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30628891

RESUMEN

The innervation of the mammary gland is controlled by brain-derived neurotrophic factor (BDNF), and sexually dimorphic sequestering of BDNF by the truncated form of TrkB (TrkB.T1) directs male-specific axonal pruning in mice. It is unknown whether other cues modulate these processes. We detected specific, non-dimorphic, expression of Semaphorin family members in the mouse mammary gland, which signal through PlexinA4. PlexinA4 deletion in both female and male embryos caused developmental hyperinnervation of the gland, which could be reduced by genetic co-reduction of BDNF. Moreover, in males, PlexinA4 ablation delayed axonal pruning, independently of the initial levels of innervation. In support of this, in vitro reduction of BDNF induced axonal hypersensitivity to PlexinA4 signaling. Overall, our study shows that precise sensory innervation of the mammary gland is regulated by the balance between trophic and repulsive signaling. Upon inhibition of trophic signaling, these repulsive factors may promote axonal pruning.


Asunto(s)
Axones/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Glándulas Mamarias Animales/inervación , Semaforinas/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Células COS , Chlorocebus aethiops , Femenino , Células HEK293 , Humanos , Masculino , Glándulas Mamarias Animales/embriología , Glándulas Mamarias Animales/metabolismo , Ratones Endogámicos ICR , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Receptor trkB/genética , Receptor trkB/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Semaforinas/genética , Factores Sexuales , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA