Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
AAPS PharmSciTech ; 25(6): 145, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918292

RESUMEN

The objective of the current research was to develop abietic acid (AA)-loaded hybrid polymeric nanoparticles (HNPs) for anti-inflammatory and antioxidant activity after oral administration. AAHNPs were developed by microinjection technique and optimized by 3-factor 3-level Box-Behnken design. The AAHNPs were evaluated for morphology, FTIR, X-ray diffraction, in-vitro release, ex-vivo permeation, in-vitro antioxidant, and in-vivo anti-inflammatory activity. The optimized AAHNPs (AAHNPsopt) displayed 384.5 ± 6.36nm of PS, 0.376 of PDI, 23.0 mV of ZP, and 80.01 ± 1.89% of EE. FTIR and X-ray diffraction study results revealed that AA was encapsulated into a HNPs matrix. The AAHNPsopt showed significant (P < 0.05) high and sustained release of AA (86.72 ± 4.92%) than pure AA (29.87 ± 3.11%) in 24h. AAHNPsopt showed an initial fast release of AA (20.12 ± 3.07% in 2h), which succeeded in reaching the therapeutic concentration. The AAHNPsopt showed 2.49-fold higher ex-vivo gut permeation flux than pure AA due to the presence of lipid and surfactant. The AAHNPsopt exhibited significantly (P < 0.05, P < 0.01, P < 0.001) higher antioxidant activity as compared to pure AA at each concentration. AAHNPsopt formulation displayed a significantly (P < 0.05) higher anti-inflammatory effect (21.51 ± 2.23% swelling) as compared to pure AA (46.51 ± 1.74% swelling). From the in-vitro and in-vivo finding, it was concluded that HNPs might be a suitable carrier for the improvement of the therapeutic efficacy of the drug.


Asunto(s)
Abietanos , Antiinflamatorios , Antioxidantes , Portadores de Fármacos , Lípidos , Nanopartículas , Polímeros , Nanopartículas/química , Animales , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/administración & dosificación , Antioxidantes/farmacocinética , Ratas , Polímeros/química , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/administración & dosificación , Antiinflamatorios/farmacocinética , Lípidos/química , Portadores de Fármacos/química , Abietanos/farmacología , Abietanos/administración & dosificación , Abietanos/química , Difracción de Rayos X/métodos , Liberación de Fármacos , Administración Oral , Masculino , Tamaño de la Partícula , Ratas Wistar , Química Farmacéutica/métodos
2.
Sensors (Basel) ; 22(4)2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35214260

RESUMEN

Breast cancer is the most common cancer in females and ranked second after skin cancer. The use of natural compounds is a good alternative for the treatment of breast cancer with less toxicity than synthetic drugs. The aim of the present study is to develop and characterize hybrid Apigenin (AN) Nanoparticles (NPs) for oral delivery (AN-NPs). The hybrid AN-NPs were prepared by the self-assembly method using lecithin, chitosan and TPGS. Further, the NPs were optimized by Box-Behnken design (3-factor, 3-level). The hybrid NPs were evaluated for particle size (PS), entrapment efficiency (EE), zeta potential (ZP), and drug release. The optimized hybrid NPs (ON2), were further evaluated for solid state characterization, permeation, antioxidant, cytotoxicity and antimicrobial study. The formulation (ON2) exhibited small PS of 192.6 ± 4.2 nm, high EE 69.35 ± 1.1%, zeta potential of +36.54 mV, and sustained drug release (61.5 ± 2.5% in 24 h), as well as significantly (p < 0.05) enhanced drug permeation and antioxidant activity. The IC50 of pure AN was found to be significantly (p < 0.05) lower than the formulation (ON2). It also showed significantly greater (p < 0.05) antibacterial activity than pure AN against Bacillus subtilis and Salmonella typhimurium. From these findings, it revealed that a hybrid AN polymeric nanoparticle is a good carrier for the treatment of breast cancer.


Asunto(s)
Quitosano , Nanopartículas , Antioxidantes/farmacología , Apigenina/farmacología , Quitosano/química , Portadores de Fármacos/química , Femenino , Humanos , Nanopartículas/química , Tamaño de la Partícula
3.
J Microencapsul ; 38(7-8): 496-506, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34529549

RESUMEN

The current research work focuses mainly on evolving a delivery system for ginseng extract (GE), which in turn will ameliorate the neuroprotective potential through enhancing the Ginsenoside Rb1(GRb1) bioavailability (BA). Phytosome complexes (F1, F2, and F3) were prepared by reacting GE with phospholipids in disparate ratios. F3 was chosen for preparing the phytosomes powder (PP) and phytosomes-loaded microspheres (PMs). Extract microspheres (EMs) were prepared by the addition of extract directly into the same polymer mixture. F3 gave enhanced entrapment efficiency (50.61%, w/w) along with spherical-shaped particle size (42.58 ± 1.4 nm) with the least polydispersity index (0.193 ± 0.01). PM showed an enhanced relative bioavailability (157.94%) of GRb1. It also showed a greater neuroprotective potential exhibiting significant (p < 0.05) augmentation in the nociceptive threshold. It was concluded that the PM system might be an optimistic and feasible strategy to enhance the delivery of GE for the effectual treatment of neuropathy.


Asunto(s)
Panax , Fosfolípidos , Microesferas , Tamaño de la Partícula , Extractos Vegetales
4.
Cutan Ocul Toxicol ; 40(4): 338-349, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34340615

RESUMEN

Background:Conventional delivery systems like solution and suspension are commonly used for the treatment of ocular diseases but have low corneal residence time and hence the duration of effect is limited. These drawbacks of conventional systems can be reduced by preparing bioadhesive chitosan (CH) coated noisome.Methods: Niosomes (NIM) of carteolol (CT) were developed by the thin-film hydration method and optimised by the Box-Behnken statistical design. Further, the optimised CT-NIM was coated with CH to enhance the ocular residence time . The optimised formulation was evaluated for vesicle size, entrapment efficiency, and in-vitro drug release and transcorneal permeation, histopathology, etc.Results: CT-NIM-opt showed the vesicle size and entrapment efficiency of 235 ± 3.54 nm, and 70.45 ± 0.87%, respectively. DSC spectra exhibited that CT was completely encapsulated into the CH-CT-NIM matrix. Drug release from CH-CT-NIM-opt was more sustained (68.28 ± 4.2%) than CT-NIM (75.69 ± 4.5% in 12 h) and CT solution (99.89 ± 2.8% in 4 h). The CH-CT-NIM-opt represented a strong bio-adhesion (89.76 ± 3.6%) than CT-NIM-opt (15.65 ± 3.4%). The permeation flux exhibited 1.13-fold higher permeation than CT-NIM and 3.23 fold than CT solution. The corneal hydration was found to be within the limit value. The histopathology study exhibited no structural damage to the cornea . HET-CAM results showed zero scores indicating no bleeding or haemorrhage. CH-CT-NIM-opt was found to be isotonic and exhibited good stability when stored at 4 °C for the stated duration of time.Conclusion: The above findings suggested that NIM can be a potential carrier for the delivery of CT with better ocular residence time.


Asunto(s)
Antagonistas Adrenérgicos beta/administración & dosificación , Carteolol/administración & dosificación , Quitosano/química , Glaucoma de Ángulo Abierto/tratamiento farmacológico , Administración Oftálmica , Antagonistas Adrenérgicos beta/farmacocinética , Animales , Carteolol/farmacocinética , Córnea/efectos de los fármacos , Córnea/metabolismo , Liberación de Fármacos , Cabras , Humanos , Liposomas , Factores de Tiempo
5.
AAPS PharmSciTech ; 22(7): 231, 2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34477999

RESUMEN

In the present research work, surface-modified nanostructured lipid carriers (NLCs) with chitosan (CH) were prepared to improve the therapeutic efficacy of piperine (PP). NLCs were developed and optimized (CH-PP-NLCs-opt) by design expert software and the selected NLCs surface was coated with chitosan (0.2% w/v). CH-PP-NLCs-opt have shown a particle size of 149.34 ± 4.54 nm and entrapment efficiency of 80.65 ± 1.23%. The results of the solid-state characterization study exhibited that PP enclosed in lipids and present amorphous form. It might be due to the nanoparticle size of NLCs. The drug release study revealed PP-NLCs-opt and CH-PP-NLCs-opt exhibited significant (P < 0.05) difference in PP release (88.87 ± 5.23% and 76.34 ± 4.54%) as compared to pure PP (19.02 ± 2.87%). CH-PP-NLCs-opt exhibited strong bioadhesion than PP-NLCs-opt which has a positive influence the drug permeation and absorption. CH-PP-NLCs-opt showed higher permeation (1083.34 ± 34.15 µg/ cm2) than pure PP (106.65 ± 15.44 µg/cm2) and PP-NLCs-opt (732.45 ± 28.56 µg/ cm2). The significantly enhanced bioavailability of PP was observed from CH-PP-NLCs-opt (3.76- and 1.21-fold) than PP-dispersion and PP-NLCs-opt. The diabetes was induced in rats by a single intraperitoneal administration of streptozotocin (STZ, 40 mg/kg, citrate buffer pH 4.5), and results revealed that PP-NLCs-opt and CH-PP-NLCs-opt reduce the blood glucose level (28.26% and 36.52% respectively) as compared to PP-dispersion (10.87%). It also helps to maintain the altered biochemical parameters. In conclusion, CH-PP-NLC can be a novel oral nanocarrier for the management of diabetes.


Asunto(s)
Quitosano , Portadores de Fármacos , Nanoestructuras , Administración Oral , Alcaloides , Animales , Benzodioxoles , Lípidos , Tamaño de la Partícula , Piperidinas , Alcamidas Poliinsaturadas , Ratas
6.
Curr Cancer Drug Targets ; 24(2): 142-166, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37642226

RESUMEN

Ovarian cancer (OC) is the second most common gynaecological malignancy. It typically affects females over the age of 50, and since 75% of cases are only discovered at stage III or IV, this is a sign of a poor diagnosis. Despite intraperitoneal chemotherapy's chemosensitivity, most patients relapse and face death. Early detection is difficult, but treatment is also difficult due to the route of administration, resistance to therapy with recurrence, and the need for precise cancer targeting to minimize cytotoxicity and adverse effects. On the other hand, undergoing debulking surgery becomes challenging, and therapy with many chemotherapeutic medications has manifested resistance, a condition known as multidrug resistance (MDR). Although there are other therapeutic options for ovarian cancer, this article solely focuses on co-delivery techniques, which work via diverse pathways to overcome cancer cell resistance. Different pathways contribute to MDR development in ovarian cancer; however, usually, pump and non-pump mechanisms are involved. Striking cancerous cells from several angles is important to defeat MDR. Nanocarriers are known to bypass the drug efflux pump found on cellular membranes to hit the pump mechanism. Nanocarriers aid in the treatment of ovarian cancer by enhancing the delivery of chemotherapeutic drugs to the tumour sites through passive or active targeting, thereby reducing unfavorable side effects on the healthy tissues. Additionally, the enhanced permeability and retention (EPR) mechanism boosts the bioavailability of the tumour site. To address the shortcomings of conventional delivery, the current review attempts to explain the current conventional treatment with special reference to passively and actively targeted drug delivery systems (DDSs) towards specific receptors developed to treat ovarian cancer. In conclusion, tailored nanocarriers would optimize medication delivery into the intracellular compartment before optimizing intra-tumour distribution. Other novel treatment possibilities for ovarian cancer include tumour vaccines, gene therapy, targeting epigenetic alteration, and biologically targeted compounds. These characteristics might enhance the therapeutic efficacy.


Asunto(s)
Nanopartículas , Neoplasias Ováricas , Humanos , Femenino , Recurrencia Local de Neoplasia/tratamiento farmacológico , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Sistemas de Liberación de Medicamentos/métodos , Resistencia a Múltiples Medicamentos
7.
J Biomater Sci Polym Ed ; : 1-22, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39067021

RESUMEN

Wound healing is a natural process but it is impaired in certain conditions like age, stress, health, immunity status and microbial infection. Particularly in cases of chronic wounds, infection is nearly often the main and unavoidable obstacle to wound healing. For this purpose, leaves of Annona squamosa and Cinnamomum tamala were selected based on their ethnopharmacological uses and reported pharmacological activities. The ethanolic extracts of both plant parts i.e. ethanolic extracts of Annona squamosa (ASEE) and Cinnamomum tamala (CTEE) were evaluated for their antioxidant and antimicrobial activities individually as well as in 1:1 combination as Polyherbal Ethanolic extract (PHEE). In our previous work both these ethanolic extracts were combined and phytosomes were prepared by thin layer hydration method and optimized for vesicle size and entrapment efficiency. The phytosomes were then incorporated into Carbopol gel matrix. In this present study the selected phytosomal gel was tested in two different concentrations (2% and 5%) for in vivo wound healing activity using S. aureus infected excision wound model. The various parameters examined were percentage wound contraction, epithelization period, bacteriological quantification, biochemical parameters like Superoxide dismutase (SOD), Catalase and hydroxyproline. The PHEE exhibited synergistic antioxidant activity. The PHEE also showed enhanced antimicrobial activity against bacteria namely gram-positive S. aureus, gram-negative E. Coli. The phytosomal gel showed increased wound contraction, reduced time of epithelization, increased hydroxyproline content, increased levels of SOD and Catalase enzymes and reduced bacterial load when compared with Povidone iodine ointment as standard in S. aureus infected excision wound model.

8.
Artículo en Inglés | MEDLINE | ID: mdl-38639280

RESUMEN

Under the umbrella of targeted drug delivery systems, several techniques are unleashed in the market that allow a drug or other pharmacologically active material to be delivered to the target cell to treat a condition or health problem. The improvement of the pharmaceutical delivery systems' effectiveness, safety, and stability is accomplished through the Formulation of the nano-gel-based delivery system. Nanogels are aqueous dispersions of submicronsized, three-dimensional, strongly cross-linked networks of hydrophilic polymers that are inflated by water. Through a variety of delivery routes, such as oral, pulmonary, nasal, parenteral, and intraocular, an active pharmaceutical agent or therapeutic agent with a high or low molecular weight can be easily encapsulated into nanogels. Nanogels have been researched as drug delivery systems due to their beneficial qualities, such as biocompatibility, high stability, flexible particle size, drug loading capacity, and potential surface modification for active targeting by attaching ligands that recognize cognate receptors on target cells or tissues. By responding to internal or external stimuli, including pH, temperature, light, and redox, nano gels can be made to be stimulus-responsive, allowing for regulated drug release. Thus, in the fact of said characteristics' of nano gels, this review manuscript aims to provide an overview of characterization, evaluation, formulation technique, recent applications, and patents of nano gels.

9.
Recent Pat Biotechnol ; 18(4): 344-357, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38566382

RESUMEN

BACKGROUND: There are patents available related to fermented food and beverages which enhance to human health. Citrus limetta (Mosambi) has a high content of flavonoids and exhibits antioxidant activity, which could stimulate the digestive system and be useful for gastroprotective activity. It supports digestion by neutralizing the acidic digestive juices and reducing gastric acidity. OBJECTIVE: This study explored the potential of using waste peel extract from Citrus limetta to prevent ulcers. The study specifically sought to assess the anti-ulcer properties of fermented and non-fermented extracts and compare them. Further, the study looked at the potential benefits of treating or preventing ulcers with Citrus limetta waste peels and whether fermentation affected the efficacy of the treatment. METHODS: Thirty female Wistar albino rats were equally distributed into five different groups. Group 1 received distilled water (20 ml/kg/b.w); Group 2 received indomethacin (mg/kg/b.w); Group 3 received omeprazole (20 mg/kg/b.w); Group 4 received aqueous extract of Mosambi peel (400 mg/kg/b.w) and Group 5 received fermented product of extract of Mosambi peel (400 mg/kg/b.w). RESULTS: Findings explored that, compared to non-fermented citrus fruit juice, biofermented exhibited less gastric volume (1.58 ± 0.10 ml vs. 1.8 ± 0.14 ml), reduced MDA levels (355.23 ± 100.70 µmol/mg protein vs. 454.49 ± 155.88 µmol/mg protein), and low ulcer index (0.49 ± 0.07 vs. 0.72 ± 0.14). CONCLUSION: The results suggest that the bio-fermented product of Citrus limetta peel has better anti-ulcer potential against peptic ulcer induced by indomethacin in Wistar albino rats compared to non-fermented.


Asunto(s)
Antiulcerosos , Citrus , Fermentación , Extractos Vegetales , Ratas Wistar , Úlcera Gástrica , Animales , Citrus/química , Femenino , Ratas , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antiulcerosos/farmacología , Antiulcerosos/química , Úlcera Gástrica/tratamiento farmacológico , Úlcera Gástrica/metabolismo , Úlcera Gástrica/patología , Patentes como Asunto , Indometacina/metabolismo , Frutas/química , Antioxidantes/farmacología , Antioxidantes/química , Omeprazol/farmacología
10.
Heliyon ; 10(5): e27330, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38495171

RESUMEN

The green bean pods of Phaseolus vulgaris L. are traditionally used as a folk remedy for treating calcium oxalate kidney stones. The current research aimed to develop a syrup formulation containing green bean pod extract for anti-urolithiatic activity. The syrup was prepared using a simple blending method and optimized through a central composite design (CCD) with two independent variables: the ratio of pod juice (PJ) to sugar solution (SS) ranging from 1:0.5 to 1:1.5, and the percentage of CMC from 0.2% to 0.4% w/v. These variables were analyzed for their impact on viscosity (CP) and sedimentation percentage, helping to identify the best formulation out of 13 variants. The finalized formulation (F-opt) underwent assessment for physicochemical characteristics such as organoleptic properties, viscosity, density, sedimentation rate, and stability. Additionally, a microbiological assessment was performed utilizing the spread plate method. Further, it was evaluated for in vitro, ex vivo, and in vivo anti-urolithiatic activity in rat models for 28 days and compared with that of the reference standard (Cystone syrup). Additionally, acute toxicity was assessed in albino Swiss mice. Histopathological evaluations were then conducted on the kidneys of the Wistar rats that had been used for the in vivo studies, providing insight into the treatment effects on kidney tissue structure. The optimized formulation (F-opt) was a green, viscous, clear syrup with a pH of 5.8, a viscosity of 256.38 CP, a density of 1.31 g/ml, and a sedimentation rate of 0.69%. The optimized formulation was found to be stable, showing no significant changes in physicochemical and microbiological properties. The results of the in vitro, ex vivo, and in vivo anti-urolithiatic studies indicated that the optimized formulation effectively inhibited the aggregation of calcium oxalate. The acute toxicity studies revealed no mortality or adverse effects for both the optimized formulation and pure bean pod juice at a dose of 2000 mg/kg body weight. Histopathological examination revealed that rats treated with the optimized formulation exhibited a significant reduction in both the number and size of calcium oxalate deposits within various parts of the renal tubules. It can be concluded that the syrupy formulation of Phaseolus vulgaris L. green bean pod extract demonstrated significant anti-urolithiatic activity. This activity could be due to its diuretic properties and its ability to inhibit the formation of calcium oxalate crystals. However, limitations of the study included a lack of elucidation of the mechanism and limited generalizability of the findings.

11.
Artif Cells Nanomed Biotechnol ; 51(1): 604-617, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37910394

RESUMEN

Niosomes (NS) are the promising and novel carrier of the drug for effective transdermal delivery. Apigenin (AN) is a natural bioactive compound and has various pharmacological activities. AN is poorly water soluble which directly affects therapeutic efficacy. The aim of this research work was to develop the AN-NS gel to improve transdermal delivery. The thin-film hydration method was used for the development of AN-NS. The optimized AN-NS (AN-NS2) has a vesicle size of 272.56 ± 12.49 nm, PDI is 0.249, zeta potential is -38.7 mV, and entrapment efficiency of 86.19 ± 1.51%. The FTIR spectra of the AN-NS2 depicted that AN encapsulated in the NS matrix. AN-NS2 formulation was successfully incorporated into chitosan gel and evaluated. The optimized AN-NS2 gel (AN-NS2G4) has 2110 ± 14cps of viscosity, 10.40 ± 0.21g.cm/sec of spreadability, and 99.65 ± 0.53% of drug content. AN-NS2G4 displayed significantly (p < 0.05) higher AN released (67.64 ± 3.03%) than pure AN-gel (37.31 ± 2.87%). AN-NS2G4 showed the Korsmeyer Peppas release model. AN-NS2G4 displayed significantly (p < 0.05) higher antioxidant activity (90.72%) than pure AN (64.53%) at 300 µg/ml. AN-NS2G4 displayed significantly (p < 0.05) higher % inhibition of swelling than pane AN-gel in carrageenin-induced paw oedema in rats. The finding concluded that niosomes-laden gel is a good carrier of drugs to improve transdermal delivery and therapeutic efficacy.


Asunto(s)
Antioxidantes , Liposomas , Ratas , Animales , Antioxidantes/farmacología , Portadores de Fármacos , Apigenina/farmacología , Administración Cutánea , Sistemas de Liberación de Medicamentos/métodos , Tamaño de la Partícula
12.
Pharmaceutics ; 15(7)2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37514171

RESUMEN

The present study investigates the brain-targeted efficiency of atomoxetine (AXT)-loaded nanostructured lipid carrier (NLC)-laden thermosensitive in situ gel after intranasal administration. AXT-NLC was prepared by the melt emulsification ultrasonication method and optimized using the Box-Behnken design (BBD). The optimized formulation (AXT-NLC) exhibited particle size PDI, zeta potential, and entrapment efficiency (EE) of 108 nm, 0.271, -42.3 mV, and 84.12%, respectively. The morphology of AXT-NLC was found to be spherical, as confirmed by SEM analysis. DSC results displayed that the AXT was encapsulated within the NLC matrix. Further, optimized NLC (AXT-NLC13) was incorporated into a thermosensitive in situ gel using poloxamer 407 and carbopol gelling agent and evaluated for different parameters. The optimized in situ gel (AXT-NLC13G4) formulation showed excellent viscosity (2532 ± 18 Cps) at 37 °C and formed the gel at 28-34 °C. AXT-NLC13-G4 showed a sustained release of AXT (92.89 ± 3.98% in 12 h) compared to pure AXT (95.47 ± 2.76% in 4 h). The permeation flux through goat nasal mucosa of AXT from pure AXT and AXT-NLC13-G4 was 504.37 µg/cm2·h and 232.41 µg/cm2·h, respectively. AXT-NLC13-G4 intranasally displayed significantly higher absolute bioavailability of AXT (1.59-fold higher) than intravenous administration. AXT-NLC13-G4 intranasally showed 51.91% higher BTP than pure AXT (28.64%) when administered via the same route (intranasally). AXT-NLC13-G4 showed significantly higher BTE (207.92%) than pure AXT (140.14%) when administered intranasally, confirming that a high amount of the AXT reached the brain. With the disrupted performance induced by L-methionine, the AXT-NLC13-G4 showed significantly (p < 0.05) better activity than pure AXT as well as donepezil (standard). The finding concluded that NLC in situ gel is a novel carrier of AXT for improvement of brain delivery by the intranasal route and requires further investigation for more justification.

13.
Pharm Nanotechnol ; 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37653638

RESUMEN

BACKGROUND: As indicated by the biopharmaceutical classification system, Celecoxib is a class II moiety. Many endeavors have been made to improve its solubility and consequently its dissolution rate, thus enhancing its overall bioavailability. In the present investigation, the nano-lipid technology was exploited to control the release of celecoxib (CXB) to overcome its dissolution problem. Solid lipid nanoparticles (SLNs) have a small particle size (50-1000 nm) that results in a large surface area-to-volume ratio, which further enhances the contact between the drug and the dissolution medium. This leads to improved drug release and absorption. Moreover, SLNs can solubilize hydrophobic drugs within the lipid matrix, increasing their effective solubility and facilitating their dissolution in an aqueous environment. AIM AND OBJECTIVE: The objective of the study was to enhance the solubility and bioavailability of a BCS Class-II drug-celecoxib formulating it as solid lipid nanoparticles. In order to overcome all its limitations, solid lipid nanoparticles of Celecoxib were developed, optimized, and evaluated for in-vitro and in-vivo parameters. METHODS: The CXB loaded-SLNs were prepared by solvent emulsification-diffusion technique. SLN was characterized using Fourier transform infra spectroscopy (FTIR) and evaluated for entrapment efficiency, drug loading, particle size, Polydispersity index (PDI), zeta potential, In-vitro release studies as well as in- vivoanti-inflammatory studies using rat paw edema method. The SLN formulations were optimized by central composite design (Design Expert 11- trial version). RESULTS: On the basis of outcomes of CCD the optimized formulation OF1 was selected as a desirable formulation. Its particle size, PDI, and zeta potential were found to be 314 nm, 0.204, and -18.73 respectively. It exhibited high entrapment efficiency (79±0.18 %) and drug loading (44.38±0.21 %). In-vitro release studies of the optimized formulation displayed the Korsemeyer-Peppas model with a maximum drug release of 89.42 ±0.12 % in 24 h. In-vivo studies also revealed that OF1 formulation reduced the rat paw volume to a minimum (1±0.32) in 24 h when compared to pure API (2±0.62) and marketed preparation (2±0.42). CONCLUSION: The results revealed that in-vitro release studies of optimized formulation exhibited a sustained drug release delivery. In-vivo anti-inflammatory studies proved that the CXB-loaded SLNs enhance the oral bioavailability more than pure API.

14.
Vasc Health Risk Manag ; 18: 857-866, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36536768

RESUMEN

Background: Several mechanisms have been explored for the anthracycline myocardial toxicity. These are free-radical generation, myocyte apoptosis, lipid peroxidation, mitochondrial deterioration, and direct repression of muscle-specific gene expression. Adriamycin (Doxorubicin) is a potent anti-cancer agent. Adriamycin in prolonged use is fatal and generates free radicals that lead to dose-dependent cardiac toxicity. Objective: The intent of the study was to explore the protective activity of candesartan and quercetin in cardiomyopathy induced by doxorubicin in rats. Methods: To induce cardiac toxicity, rats were intraperitoneally treated with doxorubicin (06 equivalent injections of 2.5 mg/kg, i. p. at 48 hour interval for 02 consecutive weeks to achieve a cumulative dose of 15 mg/kg). Individual and combined oral treatment of candesartan (5 mg/kg/day) and quercetin (10 mg/kg/day) was administered for four weeks. Results: Following cardiomyopathy, heart/body weight ratio (3.526 × 10-3), serum creatine kinase (352.4±16.99 IU/L), lactate dehydrogenase (661.7±20.45 IU/L) levels were elevated in addition to altered lipid profile (TC - 118.4±4.25 mg/dL, TG - 263.3±9.99 mg/dL, VLDL - 52.66±1.99 mg/dL, LDL - 52.99±5.80 mg/dL and HDL - 12.78±0.36 mg/dL). The pre-cotreatment of candesartan and quercetin significantly restored the values to normal. The increased level of lipid peroxides (33.12±1.63 µmol/mg protein), serum troponin-T (1.82 ± 0.11 pg/mL) and nitric oxide (13.33±0.73 nmol/mg protein) level along with attenuating antioxidant profile, ie catalase, glutathione and superoxide dismutase (1.43±0.12 nmol/mg protein, 8.48±0.42 nmol/mg protein and 2.09±0.031 U/mg protein) were reversed to normal. Morphometry and histopathologic changes represented a beneficial effect of single and combination pre-cotreatment of drugs which significantly decreases adriamycin cardiac toxicity. Conclusion: The overall result depicts more beneficial and cardioprotective effect of quercetin and candesartan combination as compared to their individual effects in doxorubicin treated animals. Therefore, this combination might be a suitable option to treat the cardiotoxic effect of doxorubicin.


Asunto(s)
Cardiomiopatías , Cardiotoxicidad , Humanos , Ratas , Animales , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/metabolismo , Cardiotoxicidad/patología , Quercetina/metabolismo , Quercetina/farmacología , Quercetina/uso terapéutico , Doxorrubicina/metabolismo , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Miocardio/metabolismo , Antioxidantes/uso terapéutico , Antibióticos Antineoplásicos/metabolismo , Antibióticos Antineoplásicos/farmacología , Antibióticos Antineoplásicos/uso terapéutico , Estrés Oxidativo
15.
Gels ; 8(11)2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36354595

RESUMEN

Conventional eye drops are most commonly employed topically in the eye for the management of bacterial conjunctivitis. Eye drops have a low corneal residence time and 90−95% of the administered dose is eliminated from the eye by blinking and the nasolacrimal drainage system. This problem can be minimized by formulating a mucoadhesive ocular in-situ gel system that undergoes sol-gel transition upon stimulation by temperature, pH, and ions. The goal of this study was to develop ciprofloxacin (CIP) loaded bilosomes (BLO) in-situ gel for the improvement of therapeutic efficacy. The BLO was prepared by the thin-film hydration method and optimized by the Box−Behnken design. Cholesterol (CHO), surfactant (Span 60), and bile salt (sodium deoxycholate/SDC) were used as formulation factors. The vesicle size (nm) and entrapment efficiency (%) were selected as responses (dependent factors). The optimized CIP-BLO (CIP-BLO-opt) formulation displayed a vesicle size of 182.4 ± 9.2 nm, a polydispersity index of 0.274, a zeta potential of −34,461.51 mV, and an entrapment efficiency of 90.14 ± 1.24%. Both x-ray diffraction and differential scanning calorimetry spectra did not exhibit extensive peaks of CIP in CIP-BLO-opt, revealing that CIP is encapsulated in the BLO matrix. The CIP-BLO-opt formulation was successfully incorporated into an in-situ gel system using a gelling agent, i.e., Carbopol 934P and hydroxyl propyl methyl cellulose (HPMC K100 M). CIP-BLO-opt in-situ gel formulation (CIP-BLO-opt-IG3) was evaluated for gelling capacity, clarity, pH, viscosity, in-vitro CIP release, bio-adhesive, ex-vivo permeation, toxicity, and antimicrobial study. The CIP-BLO-opt-IG3 exhibited satisfactory gelling properties with a viscosity of 145.85 ± 9.48 cP in the gelling state. CIP-BLO-opt-IG3 displayed sustained CIP release (83.87 ± 5.24%) with Korsmeyer−Peppas kinetic as a best-fitted model (R2 = 0.9667). CIP-BLO-opt-IG3 exhibited a 1.16-fold than CIP-IG and a 2.08-fold higher permeability than pure CIP. CIP-BLO-opt-IG3 displayed a significantly greater bio-adhesion property (924.52 ± 12.37 dyne/cm2) than tear film. Further, CIP-BLO-opt-IG3 does not display any toxicity as confirmed by corneal hydration (76.15%), histology, and the HET-CAM test (zero scores). CIP-BLO-opt-IG3 shows significantly higher (p < 0.05) antimicrobial activity against P. aeruginosa and S. aureus than pure CIP. From all these findings, it could be concluded that CIP-BLO-opt-IG3 might be an effective strategy for the increment of corneal residence time and therapeutic activity of CIP.

16.
Gels ; 8(7)2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35877503

RESUMEN

In this study, moxifloxacin (MX)-loaded bilosome (BS) in situ gel was prepared to improve ocular residence time. MX-BSs were prepared using the thin-film hydration method. They were optimized using a Box−Behnken design (BBD) with bile salt (A, sodium deoxycholate), an edge activator (B, Cremophor EL), and a surfactant (C, Span 60) as process variables. Their effects were assessed based on hydrodynamic diameter (Y1), entrapment efficacy (Y2), and polydispersity index (Y3). The optimized formulation (MX-BSop) depicted a low hydrodynamic diameter (192 ± 4 nm) and high entrapment efficiency (76 ± 1%). Further, MX-BSop was successfully transformed into an in situ gel using chitosan and sodium alginate as carriers. The optimized MX-BSop in situ gel (MX-BSop-Ig4) was further evaluated for gelling capacity, clarity, pH, viscosity, in vitro release, bio-adhesiveness, ex vivo permeation, toxicity, and antimicrobial properties. MX-BSop-Ig4 exhibited an optimum viscosity of 65.4 ± 5.3 cps in sol and 287.5 ± 10.5 cps in gel states. The sustained release profile (82 ± 4% in 24 h) was achieved with a Korsmeyer−Peppas kinetic release model (R2 = 0.9466). Significant bio-adhesion (967.9 dyne/cm2) was achieved in tear film. It also exhibited 1.2-fold and 2.8-fold higher permeation than MX-Ig and a pure MX solution, respectively. It did not show any toxicity to the tested tissue, confirmed by corneal hydration (77.3%), cornea histopathology (no internal changes), and a HET-CAM test (zero score). MX-BSop-Ig4 exhibited a significantly (p < 0.05) higher antimicrobial effect than pure MX against Staphylococcus aureus and Escherichia coli. The findings suggest that bilosome in situ gel is a good alternative to increase corneal residence time, as well as to improve therapeutic activity.

17.
Assay Drug Dev Technol ; 20(1): 5-21, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34978917

RESUMEN

The present research work was aimed to develop and optimize the nanostructured lipid carrier (NLCs) of the antihypertensive drug lacidipine (LAC) for the improvement of oral bioavailability and antihypertensive activity. LAC-NLCs were successfully developed by the preemulsion probe sonication technique. The formulations were optimized by Box-Behnken design and assessed for particle size (PS), polydispersity index (PDI), entrapment efficiency (EE), drug loading (DL), drug release, ex vivo permeation, and in vivo study. The optimized LAC-NLCs showed nanometric PS (191.0 ± 5.89 nm), high EE (90% ± 3.69%) and DL (9.26% ± 1.89%), negative zeta potential (-28.9 ± 0.99 mV), and narrow size distribution (PDI of 0.074 ± 0.013) with spherical morphology. The drug release study revealed that a significantly (p < 0.05) higher LAC release (88.49% ± 3.01%) was achieved from the optimized LAC-NLCs compared to LAC-dispersion (34.27% ± 3.01%). Moreover, the optimized LAC-NLCs showed significantly (p < 0.05) higher intestinal permeation (692.04 ± 19.76 µg) than LAC-dispersion (23.83 ± 5.08 µg). After oral administration of a single dose of LAC, the optimized LAC-NLCs exhibited 3.45-fold higher relative oral bioavailability as well as a more prominent antihypertensive effect than LAC-dispersion. This might be due to the high penetration and absorption of the drug. Hence, NLCs might provide an efficient nano delivery for the management of hypertension and promising drug delivery systems for the bioavailability enhancement of LAC.


Asunto(s)
Dihidropiridinas , Portadores de Fármacos , Liberación de Fármacos , Lípidos
18.
Drug Deliv ; 29(1): 3035-3050, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36120935

RESUMEN

Quercetin (QT) is a flavonoid that exhibits anti-oxidant and chemo-preventive activity. This research work aimed to develop surface-modified bilosomes (BS) of QT. The BS was prepared by the solvent evaporation method and optimized by the Box-Behnken design. The optimized QT-BS (QT-BS3opt) displayed vesicle size (143.51 nm), PDI (0.256), zeta potential (-15.4 mV), and entrapment efficiency (89.52%). Further, the optimized QT-BS formulation was coated with chitosan (CS). The XRD diffractogram of CS-QT-BS3opt1 did not exhibit extensive peaks of QT, revealing that QT is properly encapsulated in the polymer matrix. The QT-BS3opt and CS-QT-BS3opt1 exhibited sustained-release (86.62 ± 3.23% and 69.32 ± 2.57%, respectively) up to 24 h with the Korsmeyer-Peppas kinetic model (R2 =0.9089). CS-QT-BS3opt1 exhibited significantly (P < .05) high flux, i.e. 4.20-fold more than pure QT dispersion and 1.27-fold higher than QT-BS3opt. CS-QT-BS3opt1 showed significantly greater bio-adhesion (76.43 ± 2.42%) than QT-BS3opt (20.82 ± 1.45%). The antioxidant activity showed that QT from CS-QT-BS3opt1 has more remarkable (P < .05) antioxidant activity at each concentration than pure QT. The CS-QT-BS3opt1 exhibited 1.61-fold higher cytotoxicity against MFC7 and 1.44-fold higher cytotoxicity against MDA-MB-231 than pure QT. The CS-QT-BS3opt1 displayed a significantly greater antimicrobial potential against E. coli than against S. aureus. From all these findings, it could be concluded that surface-modified QT-BS might be an effective approach for increasing the efficacy of QT in the treatment of certain ailments.


Asunto(s)
Antiinfecciosos , Quitosano , Antibacterianos/farmacología , Antioxidantes/farmacología , Preparaciones de Acción Retardada , Escherichia coli , Polímeros , Quercetina/farmacología , Solventes , Staphylococcus aureus
19.
Int J Pharm ; 627: 122232, 2022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-36155794

RESUMEN

The objective of the present research was to develop, optimize, and evaluate rotigotine (RT)-loaded chitosan (CH) coated nanostructured lipid carriers (RT-CH-NLCs) for nose-to-brain delivery. The NLCs were prepared by homogenization and sonication technique as well as optimized by using three factors at three-level Box-Behnken design. The prepared NLCs were evaluated for particle size, zeta potential, entrapment efficiency, drug release, and ex vivo permeation. The pharmacokinetic study was conducted on albino Wistar rats to evaluate the bioavailability and neuropharmacokinetic parameters after intranasal administration of the optimized formulation (RT-CH-NLCs-OPT). The optimized formulation showed the particle size (170.48 ± 8.37 nm), PDI (0.19 ± 0.03), zeta potential (+26.73 mV), and entrapment efficiency (82.37 ± 2.48 %). In vitro drug release study displayed a sustained drug release pattern from RT-CH-NLCs-OPT (86.73 ± 8.58 % in 24 h) in comparison to RT-Dis (98.61 ± 7.24 % in 16 h). The permeability coefficient (PC) was found to be 11.39 ± 1.08 × 10-4 cm.h-1 and 2.34 folds higher than RT-Dis (4.85 ± 1.53 × 10-4 cm.h-1). The relative bioavailability of RT from RT-CH-NLCs-OPT was 3.2-fold greater as compared to RT-Dis. The absolute bioavailability of RT after intranasal administration of RT-CH-NLCs-OPT was 2.1-fold higher than RT-CH-NLCs-OPT administered intravenously. The brain targeting and targeting potential was displayed by DTE (422.03 %) and DTP (76.03 %) after intranasal administration of RT-CH-NLCs-OPT as compared to RT-Dis (DTE 173.91 % and DTP 59.97 %). Furthermore, confocal laser scanning microscopy results confirmed better brain targeting for RT-CH-NLCs-OPT as compared to RT-Dis. From these findings, it could be concluded that RT-CH-NLCs could serve as a promising strategy for targeting RT through the intranasal route.


Asunto(s)
Quitosano , Nanoestructuras , Animales , Ratas , Administración Intranasal , Portadores de Fármacos , Lípidos , Tamaño de la Partícula , Ratas Wistar
20.
Gels ; 8(7)2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35877539

RESUMEN

A prominent research topic in contemporary advanced functional materials science is the production of smart materials based on polymers that may independently adjust their physical and/or chemical characteristics when subjected to external stimuli. Smart hydrogels based on poly(N-isopropylacrylamide) (PNIPAM) demonstrate distinct thermoresponsive features close to a lower critical solution temperature (LCST) that enhance their capability in various biomedical applications such as drug delivery, tissue engineering, and wound dressings. Nevertheless, they have intrinsic shortcomings such as poor mechanical properties, limited loading capacity of actives, and poor biodegradability. Formulation of PNIPAM with diverse functional constituents to develop hydrogel composites is an efficient scheme to overcome these defects, which can significantly help for practicable application. This review reports on the latest developments in functional PNIPAM-based smart hydrogels for various biomedical applications. The first section describes the properties of PNIPAM-based hydrogels, followed by potential applications in diverse fields. Ultimately, this review summarizes the challenges and opportunities in this emerging area of research and development concerning this fascinating polymer-based system deep-rooted in chemistry and material science.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA