Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Bioorg Med Chem Lett ; 107: 129792, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38734389

RESUMEN

Ceramide 1-phosphate (C1P) is a lipid mediator that specifically binds and activates cytosolic phospholipase A2α (cPLA2α). To elucidate the structure-activity relationship of the affinity of C1P for cPLA2α in lipid environments, we prepared a series of C1P analogs containing structural modifications in the hydrophilic parts and subjected them to surface plasmon resonance (SPR). The results suggested the presence of a specific binding site for cPLA2α on the amide, 3-OH and phosphate groups in C1P structure. Especially, dihydro-C1P exhibited enhanced affinity for cPLA2α, suggesting the hydrogen bonding ability of 3-hydroxy group is important for interactions with cPLA2α. This study helps to understand the influence of specific structural moieties of C1P on the interaction with cPLA2α at the atomistic level and may lead to the design of drugs that regulate cPLA2α activation.


Asunto(s)
Ceramidas , Diseño de Fármacos , Resonancia por Plasmón de Superficie , Ceramidas/química , Ceramidas/síntesis química , Ceramidas/metabolismo , Relación Estructura-Actividad , Fosfolipasas A2 Grupo IV/metabolismo , Fosfolipasas A2 Grupo IV/antagonistas & inhibidores , Humanos , Estructura Molecular , Sitios de Unión
2.
Langmuir ; 39(43): 15189-15199, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37729012

RESUMEN

Although lateral and inter-leaflet lipid-lipid interactions in cell membranes play roles in maintaining asymmetric lipid bilayers, the molecular basis of these interactions is largely unknown. Here, we established a method to determine the distribution ratio of phospholipids between the outer and inner leaflets of asymmetric large unilamellar vesicles (aLUVs). The trimethylammonium group, (CH3)3N+, in the choline headgroup of N-palmitoyl-sphingomyelin (PSM) and 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) gave rise to a relatively sharp signal in magic-angle spinning solid-state 1H NMR (MAS-ss-1H NMR). PSM and DOPC have the same headgroup structure, but one phospholipid was selectively observed by deuterating the trimethylammonium group of the other phospholipid. The addition of Pr3+ to the medium surrounding aLUVs selectively shifted the chemical shift of the (CH3)3N+ group in the outer leaflet from that in the inner leaflet, which allowed estimation of the inter-leaflet distribution ratio of the unlabeled lipid in aLUVs. Using this method, we evaluated the translocation of PSM and DOPC between the outer and inner leaflets of the cholesterol-containing aLUVs, with PSM and DOPC mostly distributed in the outer and inner leaflets, respectively, immediately after aLUV preparation; their flip and flop rates were approximately 2.7 and 6.4 × 10-6 s-1, respectively. During the passive symmetrization of aLUVs, the lipid translocation rate was decreased due to changes in the membrane order, probably through the formation of the registered liquid-ordered domains. Comparison of the result with that of symmetric LUVs revealed that lipid asymmetry may not significantly affect the lipid translocation rates, while the lateral lipid-lipid interaction may be a dominant factor in lipid translocation under these conditions. These findings highlight the importance of considering the effects of lateral lipid interactions within the same leaflet on lipid flip-flop rates when evaluating the asymmetry of phospholipids in the cell membrane.


Asunto(s)
Fosfolípidos , Esfingomielinas , Fosfolípidos/metabolismo , Espectroscopía de Protones por Resonancia Magnética , Membrana Dobles de Lípidos/química , Lecitinas , Liposomas Unilamelares/química
3.
Biophys J ; 121(7): 1143-1155, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35218738

RESUMEN

Lactosylceramide (LacCer) in the plasma membranes of immune cells is an important lipid for signaling in innate immunity through the formation of LacCer-rich domains together with cholesterol (Cho). However, the properties of the LacCer domains formed in multicomponent membranes remain unclear. In this study, we examined the properties of the LacCer domains formed in Cho-containing 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC) membranes by deuterium solid-state NMR and fluorescence lifetimes. The potent affinity of LacCer-LacCer (homophilic interaction) is known to induce a thermally stable gel phase in the unitary LacCer bilayer. In LacCer/Cho binary membranes, Cho gradually destabilized the LacCer gel phase to form the liquid-ordered phase by its potent order effect. In the LacCer/POPC binary systems without Cho, the 2H NMR spectra of 10',10'-d2-LacCer and 18',18',18'-d3-LacCer probes revealed that LacCer was poorly miscible with POPC in the membranes and formed stable gel phases without being distributed in the liquid crystalline domain. The lamellar structure of the LacCer/POPC membrane was gradually disrupted at around 60°C, whereas the addition of Cho increased the thermal stability of the lamellarity. Furthermore, the area of the LacCer gel phase and its chain order were decreased in the LacCer/POPC/Cho ternary membranes, whereas the liquid-ordered domain, which was observed in the LacCer/Cho binary membrane, was not observed. Cho surrounding the LacCer gel domain liberated LacCer and facilitated forming the submicron to nano-scale small domains in the liquid crystalline domain of the LacCer/POPC/Cho membranes, as revealed by the fluorescence lifetimes of trans-parinaric acid and trans-parinaric acid-LacCer. Our findings on the membrane properties of the LacCer domains, particularly in the presence of Cho, would help elucidate the properties of the LacCer domains in biological membranes.


Asunto(s)
Fosfatidilcolinas , Fosfolípidos , Antígenos CD , Colesterol/química , Lactosilceramidos , Membrana Dobles de Lípidos/química , Fosfatidilcolinas/química , Fosfolípidos/química
4.
Langmuir ; 38(18): 5515-5524, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35477243

RESUMEN

The chain melting of lipid bilayers has often been investigated in detail using calorimetric methods, such as differential scanning calorimetry (DSC), and the resultant main transition temperature is regarded as one of the most important parameters in model membrane experiments. However, it is not always clear whether the hydrocarbon chains of lipids are gradually melting along the depth of the lipid bilayer or whether they all melt concurrently in a very narrow temperature range, as implied by DSC. In this study, we focused on stearoyl-d-sphingomyelin (SSM) as an example of raft-forming lipids. We synthesized deuterium-labeled SSMs at the 4', 10', and 16' positions, and their depth-dependent melting was measured using solid-state deuterium NMR by changing the temperature by 1.0 °C, and comparing with that observed from a saturated lipid, palmitoylstearoylphosphatidylcholine (PSPC). The results showed that SSM exhibited a characteristic depth-dependent melting, which was not observed for PSPC. The strong intermolecular hydrogen bonds between the sphingomyelin amide moiety probably caused the chain melting to start from the chain terminus through the middle part and end in the upper part. This depth-dependent melting implies that the small gel-like domains of SSM remain at temperatures slightly above the main transition temperature. These sphingomyelin features may be responsible for the biological properties of SM-based lipid rafts.


Asunto(s)
Membrana Dobles de Lípidos , Esfingomielinas , Rastreo Diferencial de Calorimetría , Deuterio , Membrana Dobles de Lípidos/química , Microdominios de Membrana , Fosfatidilcolinas/química , Esfingomielinas/química , Temperatura
5.
Langmuir ; 38(48): 14695-14703, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36421004

RESUMEN

Exosomes are small extracellular vesicles (sEVs) involved in distal cell-cell communication and cancer migration by transferring functional cargo molecules. Membrane domains similar to lipid rafts are assumed to occur in exosome membranes and are involved in interactions with target cells. However, the bilayer membrane properties of these small vesicles have not been fully investigated. Therefore, we examined the fluidity, lateral domain separation, and transbilayer asymmetry of exosome membranes using fluorescence spectroscopy. Although there were some differences between the exosomes, TMA-DPH anisotropy showing moderate lipid chain order indicated that ordered phases comprised a significant proportion of exosome membranes. Selective TEMPO quenching of the TMA-DPH fluorescence in the liquid-disordered phase indicated that 40-50% of the exosome membrane area belonged to the ordered phase based on a phase-separated model. Furthermore, NBD-PC in the outer leaflet showed longer fluorescence lifetimes than those in the inner leaflets. Therefore, the exosome membranes maintained transbilayer asymmetry with a topology similar to that of the plasma membranes. In addition, the lateral and transbilayer orders of exosome membranes obtained from different cell lines varied, probably depending on the different membrane lipid components and compositions partially derived from donor cells. As these higher membrane orders and asymmetric topologies are similar to those of cell membranes with lipid rafts, raft-like functional domains are possibly enriched on exosome membranes. These domains likely play key roles in the biological functions and cellular uptake of exosomes by facilitating selective membrane interactions with target organs.


Asunto(s)
Exosomas , Fluidez de la Membrana , Espectrometría de Fluorescencia , Membrana Dobles de Lípidos/química , Exosomas/metabolismo , Membrana Celular/metabolismo
6.
Biophys J ; 119(3): 539-552, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32710823

RESUMEN

Sphingomyelin (SM), a major component of small domains (or lipid rafts) in mammalian cell membranes, forms a liquid-ordered phase in the presence of cholesterol (Cho). However, the nature of molecular interactions within the ordered SM/Cho phase remains elusive. We previously revealed that stearoyl-SM (SSM) and its enantiomer (ent-SSM) separately form nano-subdomains within the liquid-ordered phase involving homophilic SSM-SSM and ent-SSM-ent-SSM interactions. In this study, the details of the subdomain formation by SSMs at the nanometer range were examined using Förster resonance energy transfer (FRET) measurements in lipid bilayers containing SSM and ent-SSM, dioleoyl-phosphatidylcholine and Cho. Although microscopy detected a stereochemical effect on partition coefficient favoring stereochemically homophilic interactions in the liquid-ordered state, it showed no significant difference in large-scale liquid-ordered domain formation by the two stereoisomers. In contrast to the uniform domains seen microscopy, FRET analysis using fluorescent donor- and acceptor-labeled SSM showed distinct differences in SM and ent-SM colocalization within nanoscale distances. Donor- and acceptor-labeled SSM showed significantly higher FRET efficiency than did donor-labeled SSM and acceptor-labeled ent-SSM in lipid vesicles composed of "racemic" (1:1) mixtures of SSM/ent-SSM with dioleoylphosphatidylcholine and Cho. The difference in FRET efficiency indicated that SSM and ent-SSM assemble to form separate nano-subdomains. The average size of the subdomains decreased as temperature increased, and at physiological temperatures, the subdomains were found to have a single-digit nanometer radius. These results suggest that (even in the absence of ent-SM) SM-SM interactions play a crucial role in forming nano-subdomains within liquid-ordered domains and may be a key feature of lipid microdomains (or rafts) in biological membranes.


Asunto(s)
Fosfatidilcolinas , Esfingomielinas , Animales , Membrana Celular , Colesterol , Membrana Dobles de Lípidos , Microdominios de Membrana
7.
Biophys J ; 117(1): 36-45, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31133285

RESUMEN

Ceramide-1-phosphate is a minor sphingolipid with important functions in cell signaling. In this study, we examined the propensity of palmitoyl ceramide-1-phosphate (Cer-1P) to segregate laterally into ordered domains in different bilayer compositions at 23 and 37°C and compared this with segregation of palmitoyl ceramide (PCer) and palmitoyl sphingomyelin (PSM). The ordered-domain formation in the fluid phosphatidylcholine bilayers was determined using the emission lifetime changes of trans-parinaric acid and from differential scanning calorimetry thermograms. The lateral segregation of Cer-1P was examined when hydrated to bilayers in Tris buffer (50 mM Tris, 140 mM NaCl (pH 7.4)). At this pH, Cer-1P was negatively charged. The lateral segregation propensity of Cer-1P in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayers was intermediate between PCer and PSM. Based on differential scanning calorimetry analysis, we observed that the gel domains formed by Cer-1P in POPC bilayers (POPC:Cer-1P 70:30 by mol) were less stable (melting interval 16-37°C) than the corresponding POPC and PCer gel domains at equal composition (melting interval 20-55°C). The gel-phase melting enthalpy was also much lower in Cer-1P (1.5 kcal/mol) than in the PCer-containing POPC bilayers (9 kcal/mol). Cer-1P appeared to be at least partially miscible with PCer domains in POPC bilayers. Cer-1P domains were stabilized in the presence of PSM (POPC:PSM 85:15), similarly as seen with PCer-rich domains. In bilayers at 37°C, with an approximate outer-leaflet cell membrane composition (sphingomyelin and cholesterol enriched, aminophospholipid poor), Cer-1P segregation did not lead to the formation of ordered domains, at least when compared with PCer segregation. In bilayers with an approximate inner-leaflet composition (sphingomyelin poor, cholesterol and aminophospholipid enriched), Cer-1P also failed to form ordered domains. PCer segregated into ordered domains only after the PCer/cholesterol ratio exceeded an approximate equimolar ratio.


Asunto(s)
Ceramidas/química , Membrana Dobles de Lípidos/química , Colesterol/química , Liposomas/química , Fosfatidilcolinas/química , Termodinámica
8.
Org Biomol Chem ; 17(37): 8601-8610, 2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31528884

RESUMEN

Cholesterol is an essential and ubiquitous component in mammalian cell membranes. However, its distributions and interactions with phospholipids are often elusive, partly because chemical modifications for preparing cholesterol probes often cause significant perturbations in its membrane behavior. To overcome these problems, a 2H-labeled probe (24-d-cholesterol), which perfectly retained the original membrane properties, was synthesized by a stereoselective introduction of 2H into the side chain of cholesterol. A deuterium label at the side-chain more sensitively reflects membrane fluidity than the conventional labeling at the 3 position of a sterol core (3-d-cholesterol), thus providing 24-d-cholesterol with desirable properties to report membrane ordering. Solid state 2H NMR of 24-d-cholesterol with sphingomyelins (SM) and unsaturated phosphatidylcholine in the bilayer membranes clearly revealed the partitioning ratio of cholesterol in the raft-like liquid ordered (Lo) phase and the liquid disordered phase based on cholesterol interactions with surrounding lipids in each phase. This probe turned out to be superior to the widely used 3-d-cholesterol; e.g., 24-d-cholesterol clearly revealed a 10 mol% difference in the Lo distribution ratios of cholesterol between palmitoyl-SM and stearoyl-SM. The comprehensive use of 24-d-cholesterol in solid state 2H NMR will disclose the cholesterol-lipid interactions, distribution ratio of cholesterol, and membrane ordering in model bilayers as well as more complicated biological membranes.


Asunto(s)
Membrana Celular/química , Colesterol/química , Sondas Moleculares/química , Fosfolípidos/química , Colesterol/síntesis química , Conformación Molecular , Sondas Moleculares/síntesis química
9.
Biophys J ; 115(8): 1530-1540, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30274830

RESUMEN

Sphingomyelin is an abundant lipid in some cellular membrane domains, such as lipid rafts. Hydrogen bonding and hydrophobic interactions of the lipid with surrounding components such as neighboring sphingomyelin and cholesterol (Cho) are widely considered to stabilize the raft-like liquid-ordered (Lo) domains in membrane bilayers. However, details of their interactions responsible for the formation of Lo domains remain largely unknown. In this study, the enantiomer of stearoyl sphingomyelin (ent-SSM) was prepared, and its physicochemical properties were compared with the natural SSM and the diastereomer of SSM to examine possible stereoselective lipid-lipid interactions. Interestingly, differential scanning calorimetry experiments demonstrated that palmitoyl sphingomyelin, with natural stereochemistry, exhibited higher miscibility with SSM bilayers than with ent-SSM bilayers, indicating that the homophilic sphingomyelin interactions occurred in a stereoselective manner. Solid-state 2H NMR revealed that Cho elicited its ordering effect very similarly on SSM and ent-SSM (and even on the diastereomer of SSM), suggesting that SSM-Cho interactions are not significantly affected by stereospecific hydrogen bonding. SSM and ent-SSM formed gel-like domains with very similar lateral packing in SSM/Cho/palmitoyloleoyl phosphatidylcholine membranes, as shown by fluorescence lifetime experiments. This observation can be explained by a homophilic hydrogen-bond network, which was largely responsible for the formation of gel-like nanodomains of SSMs (or ent-SSM). Our previous study revealed that Cho-poor gel-like domains contributed significantly to the formation of an Lo phase in sphingomyelin/Cho membranes. The results of the study presented here further show that SSM-SSM interactions occur near the headgroup region, whereas hydrophobic SSM-Cho interactions appeared important in the bilayer interior for Lo domain formation. The homophilic interactions of sphingomyelins could be mainly responsible for the formation of the domains of nanometer size, which may correspond to the small sphingomyelin/Cho-based rafts that temporally occur in biological membranes.


Asunto(s)
Membrana Celular/química , Membrana Celular/metabolismo , Colesterol/metabolismo , Microdominios de Membrana/metabolismo , Fosfatidilcolinas/metabolismo , Esfingomielinas/química , Esfingomielinas/metabolismo , Colesterol/química , Fluorescencia , Geles/química , Microdominios de Membrana/química , Fosfatidilcolinas/química , Estereoisomerismo
10.
Langmuir ; 34(44): 13426-13437, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30350701

RESUMEN

In this study, we applied fluorescence spectroscopy, differential scanning calorimetry (DSC), and 2H NMR to elucidate the properties of nanoscopic segregated domains in stearoylsphingomyelin (SSM)/dioleoylphosphatidylcholine (DOPC) and dihydrostearoylsphingomyelin (dhSSM)/DOPC binary membranes. The results obtained from fluorescence measurements suggest the existence of gel-like domains with high fluidity in both SSM and dhSSM macroscopic gel phases. The DSC thermograms showed that DOPC destabilizes SM-rich gel-like domains to a much lesser extent compared to the same amount of cholesterol. It was also found that a stable lateral segregation occurs without cholesterol, indicating that SSM itself undergoes homophilic interactions to form small gel-like domains. 2H NMR experiments disclosed differences in the temperature-dependent ordering of SSM/DOPC and dhSSM/DOPC bilayers; the dhSSM membrane showed less miscibility with the DOPC fluid phase, higher thermal stability, and tighter packing. In addition, the NMR results suggest the formation of mid-sized gel-like aggregates consisting of dhSSM. These differences could be accounted for by homophilic interactions, as previously reported ( Yasuda Biophys. J. 2016 , 110 , 431 - 440 ). In the absence of cholesterol, the moderately strong sphingomyelin (SM)/SM affinity results in the formation of small gel-like domains, whereas a stronger dhSSM/dhSSM affinity leads to larger gel-like domains. Considering the similar physicochemical features of SSM and dhSSM, the present results suggest that the formation of nanosized domains of SM is better characterized by homophilic interactions than by SM-cholesterol interplay. These effects are considered important to the ordered domain formation of SMs in biological membranes.


Asunto(s)
Membrana Dobles de Lípidos/química , Fosfatidilcolinas/química , Esfingomielinas/química , Anisotropía , Rastreo Diferencial de Calorimetría , Deuterio , Fluidez de la Membrana , Microdominios de Membrana , Espectroscopía de Protones por Resonancia Magnética , Espectrometría de Fluorescencia
11.
Biophys J ; 112(5): 976-983, 2017 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-28297656

RESUMEN

We examined how the length of the long-chain base or the N-linked acyl chain of ceramides affected their lateral segregation in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayers. Lateral segregation and ceramide-rich phase formation was ascertained by a lifetime analysis of trans-parinaric acid (tPA) fluorescence. The longer the length of the long-chain base (d16:1, d17:1, d18:1, d19:1, and d20:1 in N-palmitoyl ceramide), the less ceramide was needed for the onset of lateral segregation and ceramide-rich phase formation. A similar but much weaker trend was observed when sphingosine (d18:1)-based ceramide had N-linked acyl chains of increasing length (14:0 and 16:0-20:0 in one-carbon increments). The apparent lateral packing of the ceramide-rich phase, as determined from the longest-lifetime component of tPA fluorescence, also correlated strongly with the long-chain base length, but not as strongly with the N-acyl chain length. Finally, we compared two ceramide analogs with equal carbon numbers (d16:1/17:0 or d20:1/13:0) and observed that the analog with a longer sphingoid base segregated at lower bilayer concentrations to a ceramide-rich phase compared with the shorter sphingoid base analog. The gel phase formed by d20:1/13:0 ceramide also was more thermostable than the gel phase formed by d16:1/17:0 ceramide. 2H NMR data for 10 mol % stearoyl ceramide in POPC also showed that the long-chain base was more ordered than the acyl chain at comparable chain positions and temperatures. We conclude that the long-chain base length of ceramide is more important than the acyl chain length in determining the lateral segregation of the ceramide-rich gel phase and intermolecular interactions therein.


Asunto(s)
Ceramidas/química , Fosfatidilcolinas/química
12.
Biophys J ; 112(8): 1673-1681, 2017 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-28445758

RESUMEN

Using differential scanning calorimetry and lifetime analysis of trans-parinaric acid fluorescence, we have examined how cholesterol and cholesteryl phosphocholine (CholPC) affect gel-phase properties of palmitoyl ceramide (PCer) in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1,2-dioleyol-sn-glycero-3-phosphocholine (DOPC) bilayers. By 2H NMR, we also measured fluid-phase interactions among these lipids using deuterated analogs of POPC, PCer, and cholesterol. The PCer-rich gel phase in POPC bilayers (9:1 molar ratio of POPC to PCer) was partially and similarly dissolved (and thermostability decreased) by both cholesterol and CholPC (sterol was present equimolar to PCer, or in fourfold excess). In DOPC bilayers (4:1 DOPC/PCer molar ratio), CholPC was much more efficient in dissolving the PCer-rich gel phase when compared to cholesterol. This can be interpreted as indicating that PCer interaction with POPC was stronger than PCer interaction with DOPC. PCer-CholPC interactions were also more favored in DOPC bilayers compared to POPC bilayers. In the fluid POPC-rich phase, cholesterol increased the order of the acyl chain of d2-PCer much more than did CholPC. In DOPC-rich fluid bilayers, both cholesterol and CholPC increased d2-PCer acyl chain order, and the ordering induced by CholPC was more efficient in DOPC than in POPC bilayers. In fluid POPC bilayers, the ordering of 3-d1-cholesterol by PCer was weak. In summary, we found that in the gel phase, sterol effects on the PCer-rich gel phase were markedly influenced by the acyl chain composition of the fluid PC. The same was true for fluid-phase interactions involving the sterols. Our results further suggest that PCer did not display high affinity toward either of the sterols used. We conclude that the nature of unsaturated phospholipids (POPC versus DOPC) in bilayers has major effects on the properties of ceramide gel phases and on sterol-ceramide-phospholipid interactions in such complex bilayers.


Asunto(s)
Ceramidas/química , Membrana Dobles de Lípidos/química , Fosfolípidos/química , Esteroles/química , Rastreo Diferencial de Calorimetría , Fluorescencia , Espectroscopía de Resonancia Magnética
13.
Biochim Biophys Acta ; 1858(6): 1189-95, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26975250

RESUMEN

Sticholysin I and II (StnI and StnII) are pore-forming toxins that use sphingomyelin (SM) for membrane binding. We examined how hydrogen bonding among membrane SMs affected the StnI- and StnII-induced pore formation process, resulting in bilayer permeabilization. We compared toxin-induced permeabilization in bilayers containing either SM or dihydro-SM (lacking the trans Δ(4) double bond of the long-chain base), since their hydrogen-bonding properties are known to differ greatly. We observed that whereas both StnI and StnII formed pores in unilamellar vesicles containing palmitoyl-SM or oleoyl-SM, the toxins failed to similarly form pores in vesicles prepared from dihydro-PSM or dihydro-OSM. In supported bilayers containing OSM, StnII bound efficiently, as determined by surface plasmon resonance. However, StnII binding to supported bilayers prepared from dihydro-OSM was very low under similar experimental conditions. The association of the positively charged StnII (at pH7.0) with unilamellar vesicles prepared from OSM led to a concentration-dependent increase in vesicle charge, as determined from zeta-potential measurements. With dihydro-OSM vesicles, a similar response was not observed. Benzyl alcohol, which is a small hydrogen-bonding compound with affinity to lipid bilayer interfaces, strongly facilitated StnII-induced pore formation in dihydro-OSM bilayers, suggesting that hydrogen bonding in the interfacial region originally prevented StnII from membrane binding and pore formation. We conclude that interfacial hydrogen bonding was able to affect the membrane association of StnI- and StnII, and hence their pore forming capacity. Our results suggest that other types of protein interactions in bilayers may also be affected by hydrogen-bonding origination from SMs.


Asunto(s)
Membrana Dobles de Lípidos , Porinas/farmacología , Esfingomielinas/metabolismo , Enlace de Hidrógeno , Esfingomielinas/química , Resonancia por Plasmón de Superficie
14.
Biophys J ; 110(7): 1563-1573, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-27074681

RESUMEN

Bilayer lipids influence the lateral structure of the membranes, but the relationship between lipid properties and the lateral structure formed is not always understood. Model membrane studies on bilayers containing cholesterol and various phospholipids (PLs) suggest that high and low temperature melting PLs may segregate, especially in the presence of cholesterol. The effect of different PL headgroups on lateral structure of bilayers is also not clear. Here, we have examined the formation of lateral heterogeneity in increasingly complex (up to five-component) multilamellar bilayers. We have used time-resolved fluorescence spectroscopy with domain-selective fluorescent probes (PL-conjugated trans-parinaric acid), and (2)H NMR spectroscopy with site or perdeuterated PLs. We have measured changes in bilayer order using such domain-selective probes both as a function of temperature and composition. Our results from time-resolved fluorescence and (2)H NMR showed that in ternary bilayers, acyl chain order and thermostability in sphingomyelin-rich domains were not affected to any greater extent by the headgroup structure of the monounsaturated PLs (phosphatidylcholine, phosphatidylethanolamine, or phosphatidylserine) in the bilayer. In the complex five-component bilayers, we could not detect major differences between the different monounsaturated PLs regarding cholesterol-induced ordering. However, cholesterol clearly influenced deuterated N-palmitoyl sphingomyelin differently than the other deuterated PLs, suggesting that cholesterol favored N-palmitoyl sphingomyelin over the other PLs. Taken together, both the fluorescence spectroscopy and (2)H NMR data suggest that the complex five-component membranes displayed lateral heterogeneity, at least in the lower temperature regimen examined.


Asunto(s)
Membrana Celular/metabolismo , Membrana Dobles de Lípidos/metabolismo , Fosfolípidos/metabolismo , Membrana Celular/química , Membrana Dobles de Lípidos/química , Fosfolípidos/química
15.
Biophys J ; 110(2): 431-440, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26789766

RESUMEN

The phospholipid acyl chain composition and order, the hydrogen bonding, and properties of the phospholipid headgroup all influence cholesterol/phospholipid interactions in hydrated bilayers. In this study, we examined the influence of hydrogen bonding on sphingomyelin (SM) colipid interactions in fluid uni- and multilamellar vesicles. We have compared the properties of oleoyl or palmitoyl SM with comparable dihydro-SMs, because the hydrogen bonding properties of SM and dihydro-SM differ. The association of cholestatrienol, a fluorescent cholesterol analog, with oleoyl sphingomyelin (OSM) was significantly stronger than its association with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, in bilayers with equal acyl chain order. The association of cholestatrienol with dihydro-OSM, which lacks a trans double bond in the sphingoid base, was even stronger than the association with OSM, suggesting an important role for hydrogen bonding in stabilizing sterol/SM interactions. Furthermore, with saturated SM in the presence of 15 mol % cholesterol, cholesterol association with fluid dihydro-palmitoyl SM bilayers was stronger than seen with palmitoyl SM under similar conditions. The different hydrogen bonding properties in OSM and dihydro-OSM bilayers also influenced the segregation of palmitoyl ceramide and dipalmitoylglycerol into an ordered phase. The ordered, palmitoyl ceramide-rich phase started to form above 2 mol % in the dihydro-OSM bilayers but only above 6 mol % in the OSM bilayers. The lateral segregation of dipalmitoylglycerol was also much more pronounced in dihydro-OSM bilayers than in OSM bilayers. The results show that hydrogen bonding is important for sterol/SM and ceramide/SM interactions, as well as for the lateral segregation of a diglyceride. A possible molecular explanation for the different hydrogen bonding in SM and dihydro-SM bilayers is presented and discussed.


Asunto(s)
Membrana Dobles de Lípidos/química , Esfingomielinas/química , Ceramidas/química , Enlace de Hidrógeno , Ácidos Oléicos/química , Ácidos Palmíticos/química
16.
Biophys J ; 111(3): 546-556, 2016 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-27508438

RESUMEN

Saturated and unsaturated phospholipids (PLs) can segregate into lateral domains. The preference of cholesterol for saturated acyl chains over monounsaturated, and especially polyunsaturated ones, may also affect lateral segregation. Here we have studied how cholesterol influenced the lateral segregation of saturated and unsaturated PLs, for which cholesterol had a varying degree of affinity. The fluorescence lifetime of trans-parinaric acid reported the formation of ordered domains (gel or liquid-ordered (lo)) in bilayers composed of different unsaturated phosphatidylcholines, and dipalmitoyl-phosphatidylcholine or n-palmitoyl-sphingomyelin, in the presence or absence of cholesterol. We observed that cholesterol facilitated lateral segregations and the degree of facilitation correlated with the relative affinity of cholesterol for the different PLs in the bilayers. Differential scanning calorimetry and (2)H nuclear magnetic resonance showed that cholesterol increased the thermostability of both the gel and lo-domains. Increased number of double bonds in the unsaturated PL increased the order in the lo-domains, likely by enriching the ordered domains in saturated lipids and cholesterol. This supported the conclusions from the trans-parinaric acid experiments, and offers insight into how cholesterol facilitated lateral segregation. In conclusion, the relative affinity of cholesterol for different PLs appears to be an important determinant for the formation of ordered domains. Our data suggests that knowledge of the affinity of cholesterol for the different PLs in a bilayer allows prediction of the degree to which the sterol promotes lo-domain formation.


Asunto(s)
Colesterol/metabolismo , Colesterol/farmacología , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Fosfolípidos/metabolismo , Relación Dosis-Respuesta a Droga , Especificidad por Sustrato , Temperatura
17.
Biophys J ; 108(10): 2502-2506, 2015 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-25992728

RESUMEN

In this report, we applied site-specifically deuterated N-stearoylsphingomyelins (SSMs) to raft-exhibiting ternary mixtures containing SSM, 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and cholesterol (Chol) and successfully acquired deuterium quadrupole coupling profiles of SSM from liquid-ordered (Lo) and liquid-disordered (Ld) domains. To our knowledge, this is the first report that shows detailed lipid chain dynamics separately and simultaneously obtained from coexisting Lo and Ld domains. We also found that the quadrupole profile of the Lo phase in the ternary system was almost identical to that in the SSM-Chol binary mixture, suggesting that the order profile of the binary system is essentially applicable to more complicated membrane systems in terms of the acyl chain order. We also demonstrated that (2)H NMR spectroscopy, in combination with organic synthesis of deuterated components, could be used to reveal the accurate mole fractions of each component distributed in the Lo and Ld domains. As compared with the reported tie-line analysis of phase diagrams, the merit of our (2)H NMR analysis is that the domain-specific compositional fractions are directly attainable without experimental complexity and ambiguity. The accurate compositional distributions as well as lipid order profiles in ternary mixtures are relevant to understanding the molecular mechanism of lipid raft formation.


Asunto(s)
Microdominios de Membrana/química , Colesterol/química , Deuterio/química , Espectroscopía de Resonancia Magnética , Fosfatidilcolinas/química , Esfingomielinas/química
18.
Langmuir ; 31(51): 13783-92, 2015 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-26639840

RESUMEN

In this study, we measured the time-resolved fluorescence of trans-parinaric acid (tPA), steady-state fluorescence anisotropy of diphenylhexatriene (DPH), and (2)H NMR of 10,10-d2-stearoyl lipids in stearoyl sphingomyelin with cholesterol (SSM/Chol) and l-palmitoyl-2-stearoyl-sn-glycero-3-phosphocholine with Chol (PSPC/Chol) binary membranes. The results suggest that the membrane order obtained from the fluorescence experiments shows a similar temperature dependency as those of the (2)H NMR data. More importantly, the time-resolved fluorescence data implied the presence of at least two types of domains, cholesterol-poor gel-like domains (CPGLD) and cholesterol-enriched liquid-ordered (Lo) domains. These domains appear on a nano-to-micro second time scale for both SSM-Chol and PSPC-Chol membranes. The relative size of the gel-like domain was also estimated from the temperature-dependent lifetime measurements and (2)H NMR spectral changes. The results imply that the size of the gel-like domains is very small, probably on the nanometer scale, and smaller in SSM-Chol membrane than those in PSPC-Chol bilayers, which could account for the higher thermal stability of SM-Chol membranes. The present study demonstrates that gel-like nanodomains occur in SM-Chol binary membrane even with Chol content of over 33 mol %, which has been thought to consist exclusively of Lo phase, implying that not only Lo domains but also gel-like nanodomains are important for formation of lipid-ordered phase in SM-Chol and PC-Chol membranes.


Asunto(s)
Membrana Celular/metabolismo , Colesterol/química , Espectroscopía de Resonancia Magnética , Fosfatidilcolinas/química , Esfingomielinas/química , Membrana Celular/química , Fluorescencia , Geles/química , Modelos Biológicos , Temperatura
19.
Bioorg Med Chem Lett ; 25(2): 203-6, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25510375

RESUMEN

Lipid organization has been at the center of research on lipid rafts. Dioleoylphosphatidylcholine (DOPC) is a typical unsaturated lipid. Very few studies have reported its thermodynamics in raft-like membranes. Herein, we have developed a highly efficient synthetic method for [C6-(2)H2] oleic acid, and newly synthesized [C6-(2)H2] DOPC. In raft-like oriented bilayers, [C6-(2)H2] DOPC shows clear phase separation and characteristic phase behavior at various temperature. It has been successfully utilized for the comparison of membrane properties between sphingomyelin (SM) and dihydrosphingomyelin (DHSM) membranes.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Microdominios de Membrana/química , Ácido Oléico/química , Fosfatidilcolinas/química , Ácido Oléico/análisis , Fosfatidilcolinas/análisis
20.
Biophys J ; 106(3): 631-8, 2014 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-24507603

RESUMEN

Lipid rafts are microdomains rich in sphingomyelin (SM) and cholesterol (Chol). The essential question is why natural lipid rafts prefer SM rather than saturated diacyl glycerophosphocholine, although both form ordered membranes with Chol in model systems. Hence in this study, we synthesized site-specifically deuterated 1-palmitoyl-2-stearoyl-sn-glycero-3-phosphocholines that match the acyl chain length of stearoyl-SM (SSM), and compared their deuterium quadrupole coupling profiles in detail. The results suggest a deeper distribution of Chol in the SSM membranes, a lower entropic penalty upon accommodation of Chol in SSM membranes, and a higher thermal stability of acyl-chain orders in the SSM-Chol bilayers than in the 1-palmitoyl-2-stearoyl-sn-glycero-3-phosphocholine-Chol system at various Chol concentrations. The entropy effect and thermal stability should render SM a more preferred raft constituent than saturated diacyl glycerophosphocholine. Our data also demonstrate that the selective and comprehensive deuteration strategy is indispensable for accurate comparison of order profiles.


Asunto(s)
Colesterol/química , Deuterio/química , Membrana Dobles de Lípidos/química , Fosfatidilcolinas/química , Esfingomielinas/química , Entropía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA