Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nature ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926582

RESUMEN

The region with the highest marine biodiversity on our planet is known as the Coral Triangle or Indo-Australian Archipelago (IAA)1,2. Its enormous biodiversity has long attracted the interest of biologists; however, the detailed evolutionary history of the IAA biodiversity hotspot remains poorly understood3. Here we present a high-resolution reconstruction of the Cenozoic diversity history of the IAA by inferring speciation-extinction dynamics using a comprehensive fossil dataset. We found that the IAA has exhibited a unidirectional diversification trend since about 25 million years ago, following a roughly logistic increase until a diversity plateau beginning about 2.6 million years ago. The growth of diversity was primarily controlled by diversity dependency and habitat size, and also facilitated by the alleviation of thermal stress after 13.9 million years ago. Distinct net diversification peaks were recorded at about 25, 20, 16, 12 and 5 million years ago, which were probably related to major tectonic events in addition to climate transitions. Key biogeographic processes had far-reaching effects on the IAA diversity as shown by the long-term waning of the Tethyan descendants versus the waxing of cosmopolitan and IAA taxa. Finally, it seems that the absence of major extinctions and the Cenozoic cooling have been essential in making the IAA the richest marine biodiversity hotspot on Earth.

2.
Nature ; 614(7949): 626-628, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36792895
3.
Proc Natl Acad Sci U S A ; 117(23): 12891-12896, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32457146

RESUMEN

A major research question concerning global pelagic biodiversity remains unanswered: when did the apparent tropical biodiversity depression (i.e., bimodality of latitudinal diversity gradient [LDG]) begin? The bimodal LDG may be a consequence of recent ocean warming or of deep-time evolutionary speciation and extinction processes. Using rich fossil datasets of planktonic foraminifers, we show here that a unimodal (or only weakly bimodal) diversity gradient, with a plateau in the tropics, occurred during the last ice age and has since then developed into a bimodal gradient through species distribution shifts driven by postglacial ocean warming. The bimodal LDG likely emerged before the Anthropocene and industrialization, and perhaps ∼15,000 y ago, indicating a strong environmental control of tropical diversity even before the start of anthropogenic warming. However, our model projections suggest that future anthropogenic warming further diminishes tropical pelagic diversity to a level not seen in millions of years.


Asunto(s)
Biodiversidad , Cambio Climático , Plancton/fisiología , Animales , Fósiles , Sedimentos Geológicos , Clima Tropical
4.
Glob Ecol Biogeogr ; 31(11): 2162-2171, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36606261

RESUMEN

Motivation: Historical changes in sea level caused shifting coastlines that affected the distribution and evolution of marine and terrestrial biota. At the onset of the Last Glacial Maximum (LGM) 26 ka, sea levels were >130 m lower than at present, resulting in seaward-shifted coastlines and shallow shelf seas, with emerging land bridges leading to the isolation of marine biota and the connection of land-bridge islands to the continents. At the end of the last ice age, sea levels started to rise at unprecedented rates, leading to coastal retreat, drowning of land bridges and contraction of island areas. Although a growing number of studies take historical coastline dynamics into consideration, they are mostly based on past global sea-level stands and present-day water depths and neglect the influence of global geophysical changes on historical coastline positions. Here, we present a novel geophysically corrected global historical coastline position raster for the period from 26 ka to the present. This coastline raster allows, for the first time, calculation of global and regional coastline retreat rates and land loss rates. Additionally, we produced, per time step, 53 shelf sea rasters to present shelf sea positions and to calculate the shelf sea expansion rates. These metrics are essential to assess the role of isolation and connectivity in shaping marine and insular biodiversity patterns and evolutionary signatures within species and species assemblages. Main types of variables contained: The coastline age raster contains cells with ages in thousands of years before present (bp), representing the time since the coastline was positioned in the raster cells, for the period between 26 ka and the present. A total of 53 shelf sea rasters (sea levels <140 m) are presented, showing the extent of land (1), shelf sea (0) and deep sea (NULL) per time step of 0.5 kyr from 26 ka to the present. Spatial location and grain: The coastline age raster and shelf sea rasters have a global representation. The spatial resolution is scaled to 120 arcsec (0.333° × 0.333°), implying cells of c. 3,704 m around the equator, 3,207 m around the tropics (±30°) and 1,853 m in the temperate zone (±60°). Time period and temporal resolution: The coastline age raster shows the age of coastline positions since the onset of the LGM 26 ka, with time steps of 0.5 kyr. The 53 shelf sea rasters show, for each time step of 0.5 kyr, the position of the shelf seas (seas shallower than 140 m) and the extent of land. Level of measurement: Both the coastline age raster and the 53 shelf sea rasters are provided as TIFF files with spatial reference system WGS84 (SRID 4326). The values of the coastline age raster per grid cell correspond to the most recent coastline position (in steps of 0.5 kyr). Values range from 0 (0 ka, i.e., present day) to 260 (26 ka) in bins of 5 (0.5 kyr). A value of "no data" is ascribed to pixels that have remained below sea level since 26 ka. Software format: All data processing was done using the R programming language.

5.
Biol Lett ; 17(7): 20200666, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34283931

RESUMEN

The deep sea comprises more than 90% of the ocean; therefore, understanding the controlling factors of biodiversity in the deep sea is of great importance for predicting future changes in the functioning of the ocean system. Consensus has recently been increasing on two plausible factors that have often been discussed as the drivers of deep-sea species richness in the contexts of the species-energy and physiological tolerance hypotheses: (i) seafloor particulate organic carbon (POC) derived from primary production in the euphotic zone and (ii) temperature. Nonetheless, factors that drive deep-sea biodiversity are still actively debated potentially owing to a mirage of correlations (sign and magnitude are generally time dependent), which are often found in nonlinear, complex ecological systems, making the characterization of causalities difficult. Here, we tested the causal influences of POC flux and temperature on species richness using long-term palaeoecological datasets derived from sediment core samples and convergent cross mapping, a numerical method for characterizing causal relationships in complex systems. The results showed that temperature, but not POC flux, influenced species richness over 103-104-year time scales. The temperature-richness relationship in the deep sea suggests that human-induced future climate change may, under some conditions, affect deep-sea ecosystems through deep-water circulation changes rather than surface productivity changes.


Asunto(s)
Biodiversidad , Ecosistema , Causalidad , Cambio Climático , Humanos , Temperatura
6.
Glob Chang Biol ; 26(9): 4664-4678, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32531093

RESUMEN

Climate change manifestation in the ocean, through warming, oxygen loss, increasing acidification, and changing particulate organic carbon flux (one metric of altered food supply), is projected to affect most deep-ocean ecosystems concomitantly with increasing direct human disturbance. Climate drivers will alter deep-sea biodiversity and associated ecosystem services, and may interact with disturbance from resource extraction activities or even climate geoengineering. We suggest that to ensure the effective management of increasing use of the deep ocean (e.g., for bottom fishing, oil and gas extraction, and deep-seabed mining), environmental management and developing regulations must consider climate change. Strategic planning, impact assessment and monitoring, spatial management, application of the precautionary approach, and full-cost accounting of extraction activities should embrace climate consciousness. Coupled climate and biological modeling approaches applied in the water and on the seafloor can help accomplish this goal. For example, Earth-System Model projections of climate-change parameters at the seafloor reveal heterogeneity in projected climate hazard and time of emergence (beyond natural variability) in regions targeted for deep-seabed mining. Models that combine climate-induced changes in ocean circulation with particle tracking predict altered transport of early life stages (larvae) under climate change. Habitat suitability models can help assess the consequences of altered larval dispersal, predict climate refugia, and identify vulnerable regions for multiple species under climate change. Engaging the deep observing community can support the necessary data provisioning to mainstream climate into the development of environmental management plans. To illustrate this approach, we focus on deep-seabed mining and the International Seabed Authority, whose mandates include regulation of all mineral-related activities in international waters and protecting the marine environment from the harmful effects of mining. However, achieving deep-ocean sustainability under the UN Sustainable Development Goals will require integration of climate consideration across all policy sectors.


Asunto(s)
Cambio Climático , Ecosistema , Biodiversidad , Humanos , Minerales , Minería , Océanos y Mares
7.
Glob Chang Biol ; 22(11): 3550-3565, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27414018

RESUMEN

Although the impacts of nutrient pollution on coral reefs are well known, surprisingly, no statistical relationships have ever been established between water quality parameters, coral biodiversity and coral cover. Hong Kong provides a unique opportunity to assess this relationship. Here, coastal waters have been monitored monthly since 1986, at 76 stations, providing a highly spatially resolved water quality dataset including 68 903 data points. Moreover, a robust coral species richness (S) dataset is available from more than 100 surveyed locations, composed of 3453 individual colonies' observations, as well as a coral cover (CC) dataset including 85 sites. This wealth of data provides a unique opportunity to test the hypothesis that water quality, and in particular nutrients, drives coral biodiversity. The influence of water quality on S and CC was analyzed using GIS and multiple regression modeling. Eutrophication (as chlorophyll-a concentration; CHLA) was negatively correlated with S and CC, whereas physicochemical parameters (DO and salinity) had no significant effect. The modeling further illustrated that particulate suspended matter, dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorus (DIP) had a negative effect on S and on CC; however, the effect of nutrients was 1.5-fold to twofold greater. The highest S and CC occurred where CHLA <2 µg L-1 , DIN < 2 µm and DIP < 0.1 µm. Where these values were exceeded, S and CC were significantly lower and no live corals were observed where CHLA > 15 µg L-1 , DIN > 9 µm and DIP > 0.33 µm. This study demonstrates the importance of nutrients over other water quality parameters in coral biodiversity loss and highlights the key role of eutrophication in shaping coastal coral reef ecosystems. This work also provides ecological thresholds that may be useful for water quality guidelines and nutrient mitigation policies.


Asunto(s)
Antozoos , Biodiversidad , Animales , Arrecifes de Coral , Eutrofización , Humanos , Urbanización
8.
PLoS Biol ; 11(10): e1001682, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24143135

RESUMEN

Ongoing greenhouse gas emissions can modify climate processes and induce shifts in ocean temperature, pH, oxygen concentration, and productivity, which in turn could alter biological and social systems. Here, we provide a synoptic global assessment of the simultaneous changes in future ocean biogeochemical variables over marine biota and their broader implications for people. We analyzed modern Earth System Models forced by greenhouse gas concentration pathways until 2100 and showed that the entire world's ocean surface will be simultaneously impacted by varying intensities of ocean warming, acidification, oxygen depletion, or shortfalls in productivity. In contrast, only a small fraction of the world's ocean surface, mostly in polar regions, will experience increased oxygenation and productivity, while almost nowhere will there be ocean cooling or pH elevation. We compiled the global distribution of 32 marine habitats and biodiversity hotspots and found that they would all experience simultaneous exposure to changes in multiple biogeochemical variables. This superposition highlights the high risk for synergistic ecosystem responses, the suite of physiological adaptations needed to cope with future climate change, and the potential for reorganization of global biodiversity patterns. If co-occurring biogeochemical changes influence the delivery of ocean goods and services, then they could also have a considerable effect on human welfare. Approximately 470 to 870 million of the poorest people in the world rely heavily on the ocean for food, jobs, and revenues and live in countries that will be most affected by simultaneous changes in ocean biogeochemistry. These results highlight the high risk of degradation of marine ecosystems and associated human hardship expected in a future following current trends in anthropogenic greenhouse gas emissions.


Asunto(s)
Ecosistema , Fenómenos Geológicos , Actividades Humanas , Océanos y Mares , Biodiversidad , Planeta Tierra , Humanos , Agua de Mar , Factores de Tiempo
9.
Zoolog Sci ; 33(5): 555-565, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27715418

RESUMEN

Deep-sea hydrothermal vent fields are among the most extreme habitats on Earth. Major research interests in these ecosystems have focused on the anomalous macrofauna, which are nourished by chemoautotrophic bacterial endosymbionts. In contrast, the meiofauna is largely overlooked in this chemosynthetic environment. The present study describes a new species, Thomontocypris shimanagai sp. nov. (Crustacea: Ostracoda), which was collected from the surface of colonies of neoverrucid barnacles and paralvinellid worms on the chimneys at the Myojin-sho submarine caldera. This is the first discovery of an ostracode from deep-sea hydrothermal vent environments in the western Pacific region. In addition to the species description, we discuss three aspects: 1) adaptation, 2) endemism, and 3) dispersal strategy of the hydrothermal vent ostracodes. Regarding these aspects, we conclude the following: 1) the new species may feed on sloughed-off tissues, mucus secretions, or fecal pellets of sessile organisms, rather than depend on chemoautotrophic bacteria as symbionts for energy; 2) as has been pointed out by other studies, Thomontocypris does not likely represent a vent-specific genus; however, this new species is considered to be endemic at the species level, as it has not been found outside of the type locality; and 3) this new species may have migrated from adjacent deep-sea chemosynthesis-based habitats, such as hydrothermal vents, with wood falls potentially having acted as stepping stones.


Asunto(s)
Adaptación Fisiológica , Distribución Animal/fisiología , Crustáceos/clasificación , Respiraderos Hidrotermales , Animales , Crustáceos/anatomía & histología , Crustáceos/genética , Océano Pacífico , Especificidad de la Especie
10.
PeerJ ; 12: e17425, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38832036

RESUMEN

We report new data on non-indigenous invertebrates from the Mediterranean Sea (four ostracods and 20 molluscs), including five new records for the basin: the ostracods Neomonoceratina iniqua, Neomonoceratina aff. mediterranea, Neomonoceratina cf. entomon, Loxoconcha cf. gisellae (Arthropoda: Crustacea)-the first records of non-indigenous ostracods in the Mediterranean-and the bivalve Striarca aff. symmetrica (Mollusca). Additionally, we report for the first time Electroma vexillum from Israel, and Euthymella colzumensis, Joculator problematicus, Hemiliostraca clandestina, Pyrgulina nana, Pyrgulina microtuber, Turbonilla cangeyrani, Musculus aff. viridulus and Isognomon bicolor from Cyprus. We also report the second record of Fossarus sp. and of Cerithiopsis sp. cf. pulvis in the Mediterranean Sea, the first live collected specimens of Oscilla galilae from Cyprus and the northernmost record of Gari pallida in Israel (and the Mediterranean). Moreover, we report the earliest records of Rugalucina angela, Ervilia scaliola and Alveinus miliaceus in the Mediterranean Sea, backdating their first occurrence in the basin by 3, 5 and 7 years, respectively. We provide new data on the presence of Spondylus nicobaricus and Nudiscintilla aff. glabra in Israel. Finally, yet importantly, we use both morphological and molecular approaches to revise the systematics of the non-indigenous genus Isognomon in the Mediterranean Sea, showing that two species currently co-occur in the basin: the Caribbean I. bicolor, distributed in the central and eastern Mediterranean, and the Indo-Pacific I. aff. legumen, at present reported only from the eastern Mediterranean and whose identity requires a more in-depth taxonomic study. Our work shows the need of taxonomic expertise and investigation, the necessity to avoid the unfounded sense of confidence given by names in closed nomenclature when the NIS belong to taxa that have not enjoyed ample taxonomic work, and the necessity to continue collecting samples-rather than relying on visual censuses and bio-blitzes-to enable accurate detection of non-indigenous species.


Asunto(s)
Bivalvos , Animales , Mar Mediterráneo , Bivalvos/clasificación , Crustáceos/clasificación , Moluscos/clasificación , Israel , Distribución Animal , Especies Introducidas
11.
Mar Pollut Bull ; 197: 115757, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37988964

RESUMEN

Most anthropogenic nitrogen (N) reaches coastal waters via rivers carrying increasing loads of sewage, fertilizer, and sediments. To understand anthropogenic N impacts, we need to understand historical N-dynamics before human influence. Stable isotope ratios of N preserved in carbonates are one way to create temporal N records. However, records that span periods of human occupation are scarce, limiting our ability to contextualize modern N dynamics. Here, we produce a fossil-bound N-record using coral subfossils, spanning 6700 years in China's Greater Bay Area (GBA). We found that during the mid-to-late Holocene, the GBA's coastal N was dominated by fluvial sources. The weakening of the Asia monsoon throughout the late-Holocene decreased river outflow, leading to a relative increase of marine nitrate. This source shift from riverine-to-ocean dominance was overprinted by anthropogenic N. During the late 1980s to early 1990s, human development and associated effluent inundated the coastal system, contributing to the decline of coral communities.


Asunto(s)
Antozoos , Nitrógeno , Animales , Humanos , Nitrógeno/análisis , Monitoreo del Ambiente , Isótopos , Carbonatos , Ríos , China , Isótopos de Nitrógeno/análisis
12.
Science ; 379(6636): 978-981, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36893246

RESUMEN

Ocean manipulation to mitigate climate change may harm deep-sea ecosystems.


Asunto(s)
Cambio Climático , Ecosistema , Océanos y Mares
13.
Ecol Lett ; 15(10): 1174-9, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22738438

RESUMEN

High tropical and low polar biodiversity is one of the most fundamental patterns characterising marine ecosystems, and the influence of temperature on such marine latitudinal diversity gradients is increasingly well documented. However, the temporal stability of quantitative relationships among diversity, latitude and temperature is largely unknown. Herein we document marine zooplankton species diversity patterns at four time slices [modern, Last Glacial Maximum (18,000 years ago), last interglacial (120,000 years ago), and Pliocene (~3.3-3.0 million years ago)] and show that, although the diversity-latitude relationship has been dynamic, diversity-temperature relationships are remarkably constant over the past three million years. These results suggest that species diversity is rapidly reorganised as species' ranges respond to temperature change on ecological time scales, and that the ecological impact of future human-induced temperature change may be partly predictable from fossil and paleoclimatological records.


Asunto(s)
Biodiversidad , Temperatura , Zooplancton , Animales , Cambio Climático , Ecología , Predicción , Fósiles , Océanos y Mares
14.
Proc Natl Acad Sci U S A ; 106(51): 21717-20, 2009 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-20018702

RESUMEN

A benthic microfaunal record from the equatorial Atlantic Ocean over the past four glacial-interglacial cycles was investigated to understand temporal dynamics of deep-sea latitudinal species diversity gradients (LSDGs). The results demonstrate unexpected instability and high amplitude fluctuations of species diversity in the tropical deep ocean that are correlated with orbital-scale oscillations in global climate: Species diversity is low during glacial and high during interglacial periods. This implies that climate severely influences deep-sea diversity, even at tropical latitudes, and that deep-sea LSDGs, while generally present for the last 36 million years, were weakened or absent during glacial periods. Temporally dynamic LSDGs and unstable tropical diversity require reconsideration of current ecological hypotheses about the generation and maintenance of biodiversity as they apply to the deep sea, and underscore the potential vulnerability and conservation importance of tropical deep-sea ecosystems.


Asunto(s)
Biodiversidad , Biología Marina , Ecología
15.
Science ; 375(6576): 25-26, 2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-34990227

RESUMEN

Fossil records from tropical oceans predict biodiversity loss in a warmer world.


Asunto(s)
Océanos y Mares
16.
Nat Ecol Evol ; 6(9): 1262-1270, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35798839

RESUMEN

The biodiversity of marine and coastal habitats is experiencing unprecedented change. While there are well-known drivers of these changes, such as overexploitation, climate change and pollution, there are also relatively unknown emerging issues that are poorly understood or recognized that have potentially positive or negative impacts on marine and coastal ecosystems. In this inaugural Marine and Coastal Horizon Scan, we brought together 30 scientists, policymakers and practitioners with transdisciplinary expertise in marine and coastal systems to identify new issues that are likely to have a significant impact on the functioning and conservation of marine and coastal biodiversity over the next 5-10 years. Based on a modified Delphi voting process, the final 15 issues presented were distilled from a list of 75 submitted by participants at the start of the process. These issues are grouped into three categories: ecosystem impacts, for example the impact of wildfires and the effect of poleward migration on equatorial biodiversity; resource exploitation, including an increase in the trade of fish swim bladders and increased exploitation of marine collagens; and new technologies, such as soft robotics and new biodegradable products. Our early identification of these issues and their potential impacts on marine and coastal biodiversity will support scientists, conservationists, resource managers and policymakers to address the challenges facing marine ecosystems.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Cambio Climático , Humanos
17.
Proc Natl Acad Sci U S A ; 105(5): 1556-60, 2008 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-18227517

RESUMEN

We investigated the deep-sea fossil record of benthic ostracodes during periods of rapid climate and oceanographic change over the past 20,000 years in a core from intermediate depth in the northwestern Atlantic. Results show that deep-sea benthic community "collapses" occur with faunal turnover of up to 50% during major climatically driven oceanographic changes. Species diversity as measured by the Shannon-Wiener index falls from 3 to as low as 1.6 during these events. Major disruptions in the benthic communities commenced with Heinrich Event 1, the Inter-Allerød Cold Period (IACP: 13.1 ka), the Younger Dryas (YD: 12.9-11.5 ka), and several Holocene Bond events when changes in deep-water circulation occurred. The largest collapse is associated with the YD/IACP and is characterized by an abrupt two-step decrease in both the upper North Atlantic Deep Water assemblage and species diversity at 13.1 ka and at 12.2 ka. The ostracode fauna at this site did not fully recover until approximately 8 ka, with the establishment of Labrador Sea Water ventilation. Ecologically opportunistic slope species prospered during this community collapse. Other abrupt community collapses during the past 20 ka generally correspond to millennial climate events. These results indicate that deep-sea ecosystems are not immune to the effects of rapid climate changes occurring over centuries or less.


Asunto(s)
Clima , Crustáceos , Ecosistema , Agua de Mar , Animales
18.
Evol Dev ; 12(6): 635-46, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21040429

RESUMEN

The carapaces of some ostracode taxa bear reticulate skeletal ridges that outline underlying epidermal cells. This anatomy allows one to identify homologous cells across individuals, to infer the modal sequence of cell divisions that occurs over ontogeny, and to identify individuals with variant cell patterns (e.g., additional or missing cell divisions), even in fossils. Here we explore the variational properties and evolutionary history of this developmental system in the deep-sea ostracode genus Poseidonamicus. Using a sample of over 2000 specimens to capture variation in cell division sequence, we show that phenotypic variation in this system is highly structured: some variants, regions of the carapace, and lineages are much more variable than others. Much of the differences in variation among cells can be attributed to the molt stage in which cells take their final form-cell divisions occurring later in ontogeny are more variable than those earlier. Despite ample variation, only two evolutionary changes in the sequence of cell divisions occur over the 40 Myr history of this clade. The evolutionary changes that do occur parallel the two most common intraspecific variants, suggesting that developmental structuring of variation can have long-term evolutionary consequences. Analysis of the most common variant over the last two molt stages suggests that it suffers a fitness disadvantage relative to the modal form. Such normalizing selection may contribute to the evolutionary conservativeness of this developmental system in the Ostracoda.


Asunto(s)
Evolución Biológica , División Celular , Crustáceos/crecimiento & desarrollo , Fósiles , Animales
19.
Sci Adv ; 6(43)2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33097535

RESUMEN

The coastal tussac (Poa flabellata) grasslands of the Falkland Islands are a critical seabird breeding habitat but have been drastically reduced by grazing and erosion. Meanwhile, the sensitivity of seabirds and tussac to climate change is unknown because of a lack of long-term records in the South Atlantic. Our 14,000-year multiproxy record reveals an ecosystem state shift following seabird establishment 5000 years ago, as marine-derived nutrients from guano facilitated tussac establishment, peat productivity, and increased fire. Seabird arrival coincided with regional cooling, suggesting that the Falkland Islands are a cold-climate refugium. Conservation efforts focusing on tussac restoration should include this terrestrial-marine linkage, although a warming Southern Ocean calls into question the long-term viability of the Falkland Islands as habitat for low-latitude seabirds.

20.
Sci Adv ; 6(40)2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33008908

RESUMEN

Observations of coral reef losses to climate change far exceed our understanding of historical degradation before anthropogenic warming. This is a critical gap to fill as conservation efforts simultaneously work to reverse climate change while restoring coral reef diversity and function. Here, we focused on southern China's Greater Bay Area, where coral communities persist despite centuries of coral mining, fishing, dredging, development, and pollution. We compared subfossil assemblages with modern-day communities and revealed a 40% decrease in generic diversity, concomitant to a shift from competitive to stress-tolerant species dominance since the mid-Holocene. Regions with characteristically poor water quality-high chl-a, dissolved inorganic nitrogen, and turbidity-had lower contemporary diversity and the greatest community composition shift observed in the past, driven by the near extirpation of Acropora These observations highlight the urgent need to mitigate local stressors from development in concert with curbing greenhouse gas emissions.


Asunto(s)
Antozoos , Arrecifes de Coral , Animales , China , Cambio Climático , Ecosistema , Calidad del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA